refactor!: chieri v4 b30 scenario

- Remove useless `.utils` code
This commit is contained in:
2025-06-25 23:27:15 +08:00
parent c65798a02d
commit 06156db9c2
11 changed files with 69 additions and 100 deletions

View File

@ -0,0 +1,3 @@
from .chieri import ChieriBotV4Best30Scenario
__all__ = ["ChieriBotV4Best30Scenario"]

View File

@ -0,0 +1,3 @@
from .v4 import ChieriBotV4Best30Scenario
__all__ = ["ChieriBotV4Best30Scenario"]

View File

@ -0,0 +1,3 @@
from .impl import ChieriBotV4Best30Scenario
__all__ = ["ChieriBotV4Best30Scenario"]

View File

@ -0,0 +1,37 @@
import numpy as np
__all__ = [
"FONT_THRESHOLD",
"PURE_BG_MIN_HSV",
"PURE_BG_MAX_HSV",
"FAR_BG_MIN_HSV",
"FAR_BG_MAX_HSV",
"LOST_BG_MIN_HSV",
"LOST_BG_MAX_HSV",
"BYD_MIN_HSV",
"BYD_MAX_HSV",
"FTR_MIN_HSV",
"FTR_MAX_HSV",
"PRS_MIN_HSV",
"PRS_MAX_HSV",
]
FONT_THRESHOLD = 160
PURE_BG_MIN_HSV = np.array([95, 140, 150], np.uint8)
PURE_BG_MAX_HSV = np.array([110, 255, 255], np.uint8)
FAR_BG_MIN_HSV = np.array([15, 100, 150], np.uint8)
FAR_BG_MAX_HSV = np.array([20, 255, 255], np.uint8)
LOST_BG_MIN_HSV = np.array([115, 60, 150], np.uint8)
LOST_BG_MAX_HSV = np.array([140, 255, 255], np.uint8)
BYD_MIN_HSV = np.array([158, 120, 0], np.uint8)
BYD_MAX_HSV = np.array([172, 255, 255], np.uint8)
FTR_MIN_HSV = np.array([145, 70, 0], np.uint8)
FTR_MAX_HSV = np.array([160, 255, 255], np.uint8)
PRS_MIN_HSV = np.array([45, 60, 0], np.uint8)
PRS_MAX_HSV = np.array([70, 255, 255], np.uint8)

View File

@ -0,0 +1,223 @@
from typing import List, Optional, Tuple
import cv2
import numpy as np
from arcaea_offline_ocr.crop import crop_xywh
from arcaea_offline_ocr.providers import (
ImageCategory,
ImageIdProvider,
OcrKNearestTextProvider,
)
from arcaea_offline_ocr.scenarios.b30.base import Best30Scenario
from arcaea_offline_ocr.scenarios.base import OcrScenarioResult
from arcaea_offline_ocr.types import Mat
from .colors import (
BYD_MAX_HSV,
BYD_MIN_HSV,
FAR_BG_MAX_HSV,
FAR_BG_MIN_HSV,
FTR_MAX_HSV,
FTR_MIN_HSV,
LOST_BG_MAX_HSV,
LOST_BG_MIN_HSV,
PRS_MAX_HSV,
PRS_MIN_HSV,
PURE_BG_MAX_HSV,
PURE_BG_MIN_HSV,
)
from .rois import ChieriBotV4Rois
class ChieriBotV4Best30Scenario(Best30Scenario):
def __init__(
self,
score_knn_provider: OcrKNearestTextProvider,
pfl_knn_provider: OcrKNearestTextProvider,
image_id_provider: ImageIdProvider,
factor: float = 1.0,
):
self.__rois = ChieriBotV4Rois(factor)
self.pfl_knn_provider = pfl_knn_provider
self.score_knn_provider = score_knn_provider
self.image_id_provider = image_id_provider
@property
def rois(self):
return self.__rois
@property
def factor(self):
return self.__rois.factor
@factor.setter
def factor(self, factor: float):
self.__rois.factor = factor
def set_factor(self, img: Mat):
self.factor = img.shape[0] / 4400
def ocr_component_rating_class(self, component_bgr: Mat) -> int:
rating_class_rect = self.rois.component_rois.rating_class_rect.rounded()
rating_class_roi = crop_xywh(component_bgr, rating_class_rect)
rating_class_roi = cv2.cvtColor(rating_class_roi, cv2.COLOR_BGR2HSV)
rating_class_masks = [
cv2.inRange(rating_class_roi, PRS_MIN_HSV, PRS_MAX_HSV),
cv2.inRange(rating_class_roi, FTR_MIN_HSV, FTR_MAX_HSV),
cv2.inRange(rating_class_roi, BYD_MIN_HSV, BYD_MAX_HSV),
] # prs, ftr, byd only
rating_class_results = [np.count_nonzero(m) for m in rating_class_masks]
if max(rating_class_results) < 70:
return 0
else:
return max(enumerate(rating_class_results), key=lambda i: i[1])[0] + 1
def ocr_component_song_id_results(self, component_bgr: Mat):
jacket_rect = self.rois.component_rois.jacket_rect.floored()
jacket_roi = cv2.cvtColor(
crop_xywh(component_bgr, jacket_rect), cv2.COLOR_BGR2GRAY
)
return self.image_id_provider.results(jacket_roi, ImageCategory.JACKET)
def ocr_component_score_knn(self, component_bgr: Mat) -> int:
# sourcery skip: inline-immediately-returned-variable
score_rect = self.rois.component_rois.score_rect.rounded()
score_roi = cv2.cvtColor(
crop_xywh(component_bgr, score_rect), cv2.COLOR_BGR2GRAY
)
_, score_roi = cv2.threshold(
score_roi, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU
)
if score_roi[1][1] == 255:
score_roi = 255 - score_roi
contours, _ = cv2.findContours(
score_roi, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE
)
for contour in contours:
rect = cv2.boundingRect(contour)
if rect[3] > score_roi.shape[0] * 0.5:
continue
score_roi = cv2.fillPoly(score_roi, [contour], 0)
ocr_result = self.score_knn_provider.result(score_roi)
return int(ocr_result) if ocr_result else 0
def find_pfl_rects(
self, component_pfl_processed: Mat
) -> List[Tuple[int, int, int, int]]:
# sourcery skip: inline-immediately-returned-variable
pfl_roi_find = cv2.morphologyEx(
component_pfl_processed,
cv2.MORPH_CLOSE,
cv2.getStructuringElement(cv2.MORPH_RECT, [10, 1]),
)
pfl_contours, _ = cv2.findContours(
pfl_roi_find, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE
)
pfl_rects = [cv2.boundingRect(c) for c in pfl_contours]
pfl_rects = [
r for r in pfl_rects if r[3] > component_pfl_processed.shape[0] * 0.1
]
pfl_rects = sorted(pfl_rects, key=lambda r: r[1])
pfl_rects_adjusted = [
(
max(rect[0] - 2, 0),
rect[1],
min(rect[2] + 2, component_pfl_processed.shape[1]),
rect[3],
)
for rect in pfl_rects
]
return pfl_rects_adjusted
def preprocess_component_pfl(self, component_bgr: Mat) -> Mat:
pfl_rect = self.rois.component_rois.pfl_rect.rounded()
pfl_roi = crop_xywh(component_bgr, pfl_rect)
pfl_roi_hsv = cv2.cvtColor(pfl_roi, cv2.COLOR_BGR2HSV)
# fill the pfl bg with background color
bg_point = [round(i) for i in self.rois.component_rois.bg_point]
bg_color = component_bgr[bg_point[1]][bg_point[0]]
pure_bg_mask = cv2.inRange(pfl_roi_hsv, PURE_BG_MIN_HSV, PURE_BG_MAX_HSV)
far_bg_mask = cv2.inRange(pfl_roi_hsv, FAR_BG_MIN_HSV, FAR_BG_MAX_HSV)
lost_bg_mask = cv2.inRange(pfl_roi_hsv, LOST_BG_MIN_HSV, LOST_BG_MAX_HSV)
pfl_roi[np.where(pure_bg_mask != 0)] = bg_color
pfl_roi[np.where(far_bg_mask != 0)] = bg_color
pfl_roi[np.where(lost_bg_mask != 0)] = bg_color
# threshold
pfl_roi = cv2.cvtColor(pfl_roi, cv2.COLOR_BGR2GRAY)
# get threshold of blurred image, try ignoring the lines of bg bar
pfl_roi_blurred = cv2.GaussianBlur(pfl_roi, (5, 5), 0)
# pfl_roi_blurred = cv2.medianBlur(pfl_roi, 3)
_, pfl_roi_blurred_threshold = cv2.threshold(
pfl_roi_blurred, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU
)
# and a threshold of the original roi
_, pfl_roi_threshold = cv2.threshold(
pfl_roi, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU
)
# turn thresholds into black background
if pfl_roi_blurred_threshold[2][2] == 255:
pfl_roi_blurred_threshold = 255 - pfl_roi_blurred_threshold
if pfl_roi_threshold[2][2] == 255:
pfl_roi_threshold = 255 - pfl_roi_threshold
# return a bitwise_and result
result = cv2.bitwise_and(pfl_roi_blurred_threshold, pfl_roi_threshold)
result_eroded = cv2.erode(
result, cv2.getStructuringElement(cv2.MORPH_CROSS, (2, 2))
)
return result_eroded if len(self.find_pfl_rects(result_eroded)) == 3 else result
def ocr_component_pfl(
self, component_bgr: Mat
) -> Tuple[Optional[int], Optional[int], Optional[int]]:
try:
pfl_roi = self.preprocess_component_pfl(component_bgr)
pfl_rects = self.find_pfl_rects(pfl_roi)
pure_far_lost = []
for pfl_roi_rect in pfl_rects:
roi = crop_xywh(pfl_roi, pfl_roi_rect)
result = self.pfl_knn_provider.result(roi)
pure_far_lost.append(int(result) if result else None)
return tuple(pure_far_lost)
except Exception:
return (None, None, None)
def ocr_component(self, component_bgr: Mat) -> OcrScenarioResult:
component_blur = cv2.GaussianBlur(component_bgr, (5, 5), 0)
rating_class = self.ocr_component_rating_class(component_blur)
song_id_results = self.ocr_component_song_id_results(component_bgr)
# score = self.ocr_component_score(component_blur)
score = self.ocr_component_score_knn(component_bgr)
pure, far, lost = self.ocr_component_pfl(component_bgr)
return OcrScenarioResult(
song_id=song_id_results[0].image_id,
song_id_results=song_id_results,
rating_class=rating_class,
score=score,
pure=pure,
far=far,
lost=lost,
played_at=None,
)
def components(self, img: Mat, /):
"""
:param img: BGR format image
"""
self.set_factor(img)
return self.rois.components(img)
def result(self, component_img: Mat, /):
return self.ocr_component(component_img)
def results(self, img: Mat, /) -> List[OcrScenarioResult]:
"""
:param img: BGR format image
"""
return [self.ocr_component(component) for component in self.components(img)]

View File

@ -0,0 +1,133 @@
from typing import List
from arcaea_offline_ocr.crop import crop_xywh
from arcaea_offline_ocr.types import Mat, XYWHRect
class ChieriBotV4ComponentRois:
def __init__(self, factor: float = 1.0):
self.__factor = factor
@property
def factor(self):
return self.__factor
@factor.setter
def factor(self, factor: float):
self.__factor = factor
@property
def top_font_color_detect(self):
return XYWHRect(35, 10, 120, 100), self.factor
@property
def bottom_font_color_detect(self):
return XYWHRect(30, 125, 175, 110) * self.factor
@property
def bg_point(self):
return (75 * self.factor, 10 * self.factor)
@property
def rating_class_rect(self):
return XYWHRect(21, 40, 7, 20) * self.factor
@property
def title_rect(self):
return XYWHRect(35, 10, 430, 50) * self.factor
@property
def jacket_rect(self):
return XYWHRect(263, 0, 239, 239) * self.factor
@property
def score_rect(self):
return XYWHRect(30, 60, 270, 55) * self.factor
@property
def pfl_rect(self):
return XYWHRect(50, 125, 80, 100) * self.factor
@property
def date_rect(self):
return XYWHRect(205, 200, 225, 25) * self.factor
class ChieriBotV4Rois:
def __init__(self, factor: float = 1.0):
self.__factor = factor
self.__component_rois = ChieriBotV4ComponentRois(factor)
@property
def component_rois(self):
return self.__component_rois
@property
def factor(self):
return self.__factor
@factor.setter
def factor(self, factor: float):
self.__factor = factor
self.__component_rois.factor = factor
@property
def top(self):
return 823 * self.factor
@property
def left(self):
return 107 * self.factor
@property
def width(self):
return 502 * self.factor
@property
def height(self):
return 240 * self.factor
@property
def vertical_gap(self):
return 74 * self.factor
@property
def horizontal_gap(self):
return 40 * self.factor
@property
def horizontal_items(self):
return 3
vertical_items = 10
@property
def b33_vertical_gap(self):
return 121 * self.factor
def components(self, img_bgr: Mat) -> List[Mat]:
first_rect = XYWHRect(x=self.left, y=self.top, w=self.width, h=self.height)
results = []
last_rect = first_rect
for vi in range(self.vertical_items):
rect = XYWHRect(*first_rect)
rect += (0, (self.vertical_gap + self.height) * vi, 0, 0)
for hi in range(self.horizontal_items):
if hi > 0:
rect += ((self.width + self.horizontal_gap), 0, 0, 0)
results.append(crop_xywh(img_bgr, rect.rounded()))
last_rect = rect
last_rect += (
-(self.width + self.horizontal_gap) * 2,
self.height + self.b33_vertical_gap,
0,
0,
)
for hi in range(self.horizontal_items):
if hi > 0:
last_rect += ((self.width + self.horizontal_gap), 0, 0, 0)
results.append(crop_xywh(img_bgr, last_rect.rounded()))
return results