Merge pull request #7 from 283375/device-v2

device-v2 temporary merge
This commit is contained in:
283375 2023-08-05 18:01:45 +08:00 committed by GitHub
commit 74060b1412
14 changed files with 822 additions and 76 deletions

View File

@ -1,53 +1,56 @@
from typing import Any, Tuple
from math import floor
from typing import Tuple
from numpy import all, array, count_nonzero
from .device import Device
from .types import Mat
__all__ = [
"crop_img",
"crop_from_device_attr",
"crop_to_pure",
"crop_to_far",
"crop_to_lost",
"crop_to_max_recall",
"crop_to_rating_class",
"crop_to_score",
"crop_to_title",
]
__all__ = ["crop_xywh", "crop_black_edges"]
def crop_img(img: Mat, *, top: int, left: int, bottom: int, right: int):
return img[top:bottom, left:right]
def crop_from_device_attr(img: Mat, rect: Tuple[int, int, int, int]):
def crop_xywh(mat: Mat, rect: Tuple[int, int, int, int]):
x, y, w, h = rect
return crop_img(img, top=y, left=x, bottom=y + h, right=x + w)
return mat[y : y + h, x : x + w]
def crop_to_pure(screenshot: Mat, device: Device):
return crop_from_device_attr(screenshot, device.pure)
def is_black_edge(list_of_pixels: Mat, black_pixel=None):
if black_pixel is None:
black_pixel = array([0, 0, 0], list_of_pixels.dtype)
pixels = list_of_pixels.reshape([-1, 3])
return count_nonzero(all(pixels < black_pixel, axis=1)) > floor(len(pixels) * 0.6)
def crop_to_far(screenshot: Mat, device: Device):
return crop_from_device_attr(screenshot, device.far)
def crop_black_edges(screenshot: Mat):
cropped = screenshot.copy()
black_pixel = array([50, 50, 50], screenshot.dtype)
height, width = screenshot.shape[:2]
left = 0
right = width
top = 0
bottom = height
for i in range(width):
column = cropped[:, i]
if not is_black_edge(column, black_pixel):
break
left += 1
def crop_to_lost(screenshot: Mat, device: Device):
return crop_from_device_attr(screenshot, device.lost)
for i in sorted(range(width), reverse=True):
column = cropped[:, i]
if i <= left + 1 or not is_black_edge(column, black_pixel):
break
right -= 1
for i in range(height):
row = cropped[i]
if not is_black_edge(row, black_pixel):
break
top += 1
def crop_to_max_recall(screenshot: Mat, device: Device):
return crop_from_device_attr(screenshot, device.max_recall)
for i in sorted(range(height), reverse=True):
row = cropped[i]
if i <= top + 1 or not is_black_edge(row, black_pixel):
break
bottom -= 1
def crop_to_rating_class(screenshot: Mat, device: Device):
return crop_from_device_attr(screenshot, device.rating_class)
def crop_to_score(screenshot: Mat, device: Device):
return crop_from_device_attr(screenshot, device.score)
def crop_to_title(screenshot: Mat, device: Device):
return crop_from_device_attr(screenshot, device.title)
return cropped[top:bottom, left:right]

View File

@ -0,0 +1,64 @@
from math import floor
from typing import Any, Tuple
from numpy import all, array, count_nonzero
from ...types import Mat
from .definition import Device
__all__ = [
"crop_img",
"crop_from_device_attr",
"crop_to_pure",
"crop_to_far",
"crop_to_lost",
"crop_to_max_recall",
"crop_to_rating_class",
"crop_to_score",
"crop_to_title",
"crop_black_edges",
]
def crop_img(img: Mat, *, top: int, left: int, bottom: int, right: int):
return img[top:bottom, left:right]
def crop_from_device_attr(img: Mat, rect: Tuple[int, int, int, int]):
x, y, w, h = rect
return crop_img(img, top=y, left=x, bottom=y + h, right=x + w)
def crop_to_pure(screenshot: Mat, device: Device):
return crop_from_device_attr(screenshot, device.pure)
def crop_to_far(screenshot: Mat, device: Device):
return crop_from_device_attr(screenshot, device.far)
def crop_to_lost(screenshot: Mat, device: Device):
return crop_from_device_attr(screenshot, device.lost)
def crop_to_max_recall(screenshot: Mat, device: Device):
return crop_from_device_attr(screenshot, device.max_recall)
def crop_to_rating_class(screenshot: Mat, device: Device):
return crop_from_device_attr(screenshot, device.rating_class)
def crop_to_score(screenshot: Mat, device: Device):
return crop_from_device_attr(screenshot, device.score)
def crop_to_title(screenshot: Mat, device: Device):
return crop_from_device_attr(screenshot, device.title)
def is_black_edge(list_of_pixels: Mat, black_pixel=None):
if black_pixel is None:
black_pixel = array([0, 0, 0], list_of_pixels.dtype)
pixels = list_of_pixels.reshape([-1, 3])
return count_nonzero(all(pixels < black_pixel, axis=1)) > floor(len(pixels) * 0.6)

View File

@ -0,0 +1,37 @@
from dataclasses import dataclass
from typing import Any, Dict, Tuple
__all__ = ["Device"]
@dataclass(kw_only=True)
class Device:
version: int
uuid: str
name: str
pure: Tuple[int, int, int, int]
far: Tuple[int, int, int, int]
lost: Tuple[int, int, int, int]
max_recall: Tuple[int, int, int, int]
rating_class: Tuple[int, int, int, int]
score: Tuple[int, int, int, int]
title: Tuple[int, int, int, int]
@classmethod
def from_json_object(cls, json_dict: Dict[str, Any]):
if json_dict["version"] == 1:
return cls(
version=1,
uuid=json_dict["uuid"],
name=json_dict["name"],
pure=json_dict["pure"],
far=json_dict["far"],
lost=json_dict["lost"],
max_recall=json_dict["max_recall"],
rating_class=json_dict["rating_class"],
score=json_dict["score"],
title=json_dict["title"],
)
def repr_info(self):
return f"Device(version={self.version}, uuid={repr(self.uuid)}, name={repr(self.name)})"

View File

@ -0,0 +1,26 @@
from typing import Iterable
from attrs import define, field
from ...types import XYWHRect
def iterable_to_xywh_rect(__iter: Iterable) -> XYWHRect:
return XYWHRect(*__iter)
@define(kw_only=True)
class DeviceV2:
version = field(type=int)
uuid = field(type=str)
name = field(type=str)
crop_black_edges = field(type=bool)
factor = field(type=float)
pure = field(converter=iterable_to_xywh_rect, default=[0, 0, 0, 0])
far = field(converter=iterable_to_xywh_rect, default=[0, 0, 0, 0])
lost = field(converter=iterable_to_xywh_rect, default=[0, 0, 0, 0])
score = field(converter=iterable_to_xywh_rect, default=[0, 0, 0, 0])
max_recall_rating_class = field(
converter=iterable_to_xywh_rect, default=[0, 0, 0, 0]
)
title = field(converter=iterable_to_xywh_rect, default=[0, 0, 0, 0])

View File

@ -0,0 +1,202 @@
from typing import List, Tuple
import attrs
import cv2
import numpy as np
from ...crop import crop_xywh
from ...mask import mask_gray
from ...types import Mat, XYWHRect
from .definition import DeviceV2
from .shared import *
@attrs.define(kw_only=True)
class FindOcrBoundingRectsResult:
pure: XYWHRect
far: XYWHRect
lost: XYWHRect
max_recall: XYWHRect
gray_masked_image: Mat
def find_ocr_bounding_rects(__img_bgr: Mat, device: DeviceV2):
"""
[DEPRECATED]
---
Deprecated since new method supports directly calculate rois.
"""
img_masked = mask_gray(__img_bgr)
# process pure/far/lost
pfl_roi = crop_xywh(img_masked, device.pure_far_lost)
# close small gaps in fonts
# pfl_roi = cv2.GaussianBlur(pfl_roi, [5, 5], 0, 0)
# cv2.imshow("test2", pfl_roi)
# cv2.waitKey(0)
pfl_roi = cv2.morphologyEx(pfl_roi, cv2.MORPH_OPEN, PFL_DENOISE_KERNEL)
pfl_roi = cv2.morphologyEx(pfl_roi, cv2.MORPH_CLOSE, PFL_CLOSE_HORIZONTAL_KERNEL)
pfl_contours, _ = cv2.findContours(
pfl_roi, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE
)
pfl_contours = sorted(pfl_contours, key=cv2.contourArea)
# pfl_roi_cnt = cv2.drawContours(pfl_roi, pfl_contours, -1, [50], 2)
# cv2.imshow("test2", pfl_roi_cnt)
# cv2.waitKey(0)
pfl_rects = [list(cv2.boundingRect(c)) for c in pfl_contours]
# for r in pfl_rects:
# img = pfl_roi.copy()
# cv2.imshow("test2", cv2.rectangle(img, r, [80] * 3, 2))
# cv2.waitKey(0)
# only keep those rect.height > mask.height * 0.15
pfl_rects = list(filter(lambda rect: rect[3] > pfl_roi.shape[0] * 0.15, pfl_rects))
# choose the first 3 rects by rect.x value
pfl_rects = sorted(pfl_rects, key=lambda rect: rect[0])[:3]
# and sort them by rect.y
# ensure it is pure -> far -> lost roi.
pure_rect, far_rect, lost_rect = sorted(pfl_rects, key=lambda rect: rect[1])
# for r in [pure_rect, far_rect, lost_rect]:
# img = pfl_roi.copy()
# cv2.imshow("test2", cv2.rectangle(img, r, [80] * 3, 2))
# cv2.waitKey(0)
# process max recall
max_recall_roi = crop_xywh(img_masked, device.max_recall_rating_class)
max_recall_roi = cv2.morphologyEx(
max_recall_roi, cv2.MORPH_OPEN, MAX_RECALL_DENOISE_KERNEL
)
max_recall_roi = cv2.erode(max_recall_roi, MAX_RECALL_ERODE_KERNEL)
max_recall_roi = cv2.morphologyEx(
max_recall_roi, cv2.MORPH_CLOSE, MAX_RECALL_CLOSE_KERNEL
)
max_recall_contours, _ = cv2.findContours(
max_recall_roi, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE
)
max_recall_rects = [list(cv2.boundingRect(c)) for c in max_recall_contours]
# only keep those rect.height > mask.height * 0.1
max_recall_rects = list(
filter(lambda rect: rect[3] > max_recall_roi.shape[0] * 0.1, max_recall_rects)
)
# select the 2nd rect by rect.x
max_recall_rect = max_recall_rects[1]
# img = max_recall_roi.copy()
# cv2.imshow("test2", cv2.rectangle(img, max_recall_rect, [80] * 3, 2))
# cv2.waitKey(0)
# finally, map rect geometries to the original image
for rect in [pure_rect, far_rect, lost_rect]:
rect[0] += device.pure_far_lost[0]
rect[1] += device.pure_far_lost[1]
for rect in [max_recall_rect]:
rect[0] += device.max_recall_rating_class[0]
rect[1] += device.max_recall_rating_class[1]
# add a 2px border to every rect
for rect in [pure_rect, far_rect, lost_rect, max_recall_rect]:
# width += 2, height += 2
rect[2] += 4
rect[3] += 4
# top -= 1, left -= 1
rect[0] -= 2
rect[1] -= 2
return FindOcrBoundingRectsResult(
pure=XYWHRect(*pure_rect),
far=XYWHRect(*far_rect),
lost=XYWHRect(*lost_rect),
max_recall=XYWHRect(*max_recall_rect),
gray_masked_image=img_masked,
)
def find_digits_preprocess(__img_masked: Mat) -> Mat:
img = __img_masked.copy()
img_denoised = cv2.morphologyEx(img, cv2.MORPH_OPEN, PFL_DENOISE_KERNEL)
# img_denoised = cv2.bitwise_and(img, img_denoised)
denoise_contours, _ = cv2.findContours(
img_denoised, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE
)
# cv2.drawContours(img_denoised, contours, -1, [128], 2)
# fill all contour.area < max(contour.area) * ratio with black pixels
# for denoise purposes
# define threshold contour area
# we assume the smallest digit "1", is 80% height of the image,
# and at least 1.5 pixel wide, considering cv2.contourArea always
# returns a smaller value than the actual contour area.
max_contour_area = __img_masked.shape[0] * 0.8 * 1.5
filtered_contours = list(
filter(lambda c: cv2.contourArea(c) >= max_contour_area, denoise_contours)
)
filtered_contours_flattened = {tuple(c.flatten()) for c in filtered_contours}
for contour in denoise_contours:
if tuple(contour.flatten()) not in filtered_contours_flattened:
img_denoised = cv2.fillPoly(img_denoised, [contour], [0])
# old algorithm, finding the largest contour area
## contour_area_tuples = [(contour, cv2.contourArea(contour)) for contour in contours]
## contour_area_tuples = sorted(
## contour_area_tuples, key=lambda item: item[1], reverse=True
## )
## max_contour_area = contour_area_tuples[0][1]
## print(max_contour_area, [item[1] for item in contour_area_tuples])
## contours_filter_end_index = len(contours)
## for i, item in enumerate(contour_area_tuples):
## contour, area = item
## if area < max_contour_area * 0.15:
## contours_filter_end_index = i
## break
## contours = [item[0] for item in contour_area_tuples]
## for contour in contours[-contours_filter_end_index - 1:]:
## img = cv2.fillPoly(img, [contour], [0])
## img_denoised = cv2.fillPoly(img_denoised, [contour], [0])
## contours = contours[:contours_filter_end_index]
return img_denoised
def find_digits(__img_masked: Mat) -> List[Mat]:
img_denoised = find_digits_preprocess(__img_masked)
cv2.imshow("den", img_denoised)
cv2.waitKey(0)
contours, _ = cv2.findContours(
img_denoised, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE
)
img_x_roi = [] # type: List[Tuple[int, Mat]]
# img_x_roi = list[tuple[int, Mat]] - list[tuple[rect.x, roi_denoised]]
for contour in contours:
rect = cv2.boundingRect(contour)
# filter out rect.height < img.height * factor
if rect[3] < img_denoised.shape[0] * 0.8:
continue
contour -= (rect[0], rect[1])
img_denoised_roi = crop_xywh(img_denoised, rect)
# make a same size black image
contour_mask = np.zeros(img_denoised_roi.shape, img_denoised_roi.dtype)
# fill the contour area with white pixels
contour_mask = cv2.fillPoly(contour_mask, [contour], [255])
# apply mask to cropped images
img_denoised_roi_masked = cv2.bitwise_and(contour_mask, img_denoised_roi)
img_x_roi.append((rect[0], img_denoised_roi_masked))
# sort by rect.x
img_x_roi = sorted(img_x_roi, key=lambda item: item[0])
return [item[1] for item in img_x_roi]

View File

@ -0,0 +1,89 @@
from typing import Optional
import attrs
import cv2
import numpy as np
from ...mask import mask_byd, mask_ftr, mask_gray, mask_prs, mask_pst, mask_white
from ...ocr import ocr_digits_knn_model
from ...types import Mat, cv2_ml_KNearest
from .find import find_digits
from .rois import DeviceV2Rois
@attrs.define
class DeviceV2OcrResult:
pure: int
far: int
lost: int
score: int
rating_class: int
max_recall: int
title: Optional[str]
class DeviceV2Ocr:
def __init__(self):
self.__rois = None
self.__knn_model = None
@property
def rois(self):
if not self.__rois:
raise ValueError("`rois` unset.")
return self.__rois
@rois.setter
def rois(self, rois: DeviceV2Rois):
self.__rois = rois
@property
def knn_model(self):
if not self.__knn_model:
raise ValueError("`knn_model` unset.")
return self.__knn_model
@knn_model.setter
def knn_model(self, model: cv2_ml_KNearest):
self.__knn_model = model
def _base_ocr_digits(self, roi_processed: Mat):
digits = find_digits(roi_processed)
result = ""
for digit in digits:
roi_result = ocr_digits_knn_model(digit, self.knn_model)
if roi_result is not None:
result += str(roi_result)
return int(result, base=10)
@property
def pure(self):
roi = mask_gray(self.rois.pure)
return self._base_ocr_digits(roi)
@property
def far(self):
roi = mask_gray(self.rois.far)
return self._base_ocr_digits(roi)
@property
def lost(self):
roi = mask_gray(self.rois.lost)
return self._base_ocr_digits(roi)
@property
def score(self):
roi = cv2.cvtColor(self.rois.score, cv2.COLOR_BGR2HSV)
roi = mask_white(roi)
return self._base_ocr_digits(roi)
@property
def rating_class(self):
roi = cv2.cvtColor(self.rois.max_recall_rating_class, cv2.COLOR_BGR2HSV)
results = [
mask_pst(roi),
mask_prs(roi),
mask_ftr(roi),
mask_byd(roi),
]
return max(enumerate(results), key=lambda e: np.count_nonzero(e[1]))[0]

View File

@ -0,0 +1,265 @@
from typing import Tuple, Union
from ...crop import crop_black_edges, crop_xywh
from ...types import Mat, XYWHRect
from .definition import DeviceV2
def to_int(num: Union[int, float]) -> int:
return round(num)
def apply_factor(num: Union[int, float], factor: float):
return num * factor
class Sizes:
def __init__(self, factor: float):
self.factor = factor
def apply_factor(self, num):
return apply_factor(num, self.factor)
@property
def TOP_BAR_HEIGHT(self):
return self.apply_factor(50)
@property
def SCORE_PANEL(self) -> Tuple[int, int]:
return tuple(self.apply_factor(num) for num in [485, 239])
@property
def PFL_TOP_FROM_VER_MID(self):
return self.apply_factor(135)
@property
def PFL_LEFT_FROM_HOR_MID(self):
return self.apply_factor(5)
@property
def PFL_WIDTH(self):
return self.apply_factor(150)
@property
def PFL_FONT_PX(self):
return self.apply_factor(26)
@property
def PURE_FAR_GAP(self):
return self.apply_factor(12)
@property
def FAR_LOST_GAP(self):
return self.apply_factor(10)
@property
def SCORE_BOTTOM_FROM_VER_MID(self):
return self.apply_factor(-50)
@property
def SCORE_FONT_PX(self):
return self.apply_factor(45)
@property
def SCORE_WIDTH(self):
return self.apply_factor(280)
@property
def COVER_RIGHT_FROM_HOR_MID(self):
return self.apply_factor(-235)
@property
def COVER_WIDTH(self):
return self.apply_factor(375)
@property
def MAX_RECALL_RATING_CLASS_RIGHT_FROM_HOR_MID(self):
return self.apply_factor(-300)
@property
def MAX_RECALL_RATING_CLASS_WIDTH(self):
return self.apply_factor(275)
@property
def MAX_RECALL_RATING_CLASS_HEIGHT(self):
return self.apply_factor(75)
@property
def TITLE_BOTTOM_FROM_VER_MID(self):
return self.apply_factor(-265)
@property
def TITLE_FONT_PX(self):
return self.apply_factor(40)
@property
def TITLE_WIDTH_RIGHT(self):
return self.apply_factor(275)
class DeviceV2Rois:
def __init__(self, device: DeviceV2):
self.device = device
self.sizes = Sizes(self.device.factor)
self.__img = None
@staticmethod
def construct_int_xywh_rect(x, y, w, h) -> XYWHRect:
return XYWHRect(*[to_int(item) for item in [x, y, w, h]])
@property
def img(self):
return self.__img
@img.setter
def img(self, img: Mat):
self.__img = (
crop_black_edges(img) if self.device.crop_black_edges else img.copy()
)
@property
def h(self):
return self.img.shape[0]
@property
def ver_mid(self):
return self.h / 2
@property
def w(self):
return self.img.shape[1]
@property
def hor_mid(self):
return self.w / 2
@property
def h_fixed(self):
"""img_height -= top_bar_height"""
return self.h - self.sizes.TOP_BAR_HEIGHT
@property
def h_fixed_mid(self):
return self.sizes.TOP_BAR_HEIGHT + self.h_fixed / 2
@property
def pfl_top(self):
return self.h_fixed_mid + self.sizes.PFL_TOP_FROM_VER_MID
@property
def pfl_left(self):
return self.hor_mid + self.sizes.PFL_LEFT_FROM_HOR_MID
@property
def pure_rect(self):
return self.construct_int_xywh_rect(
x=self.pfl_left,
y=self.pfl_top,
w=self.sizes.PFL_WIDTH,
h=self.sizes.PFL_FONT_PX,
)
@property
def pure(self):
return crop_xywh(self.img, self.pure_rect)
@property
def far_rect(self):
return self.construct_int_xywh_rect(
x=self.pfl_left,
y=self.pfl_top + self.sizes.PFL_FONT_PX + self.sizes.PURE_FAR_GAP,
w=self.sizes.PFL_WIDTH,
h=self.sizes.PFL_FONT_PX,
)
@property
def far(self):
return crop_xywh(self.img, self.far_rect)
@property
def lost_rect(self):
return self.construct_int_xywh_rect(
x=self.pfl_left,
y=(
self.pfl_top
+ self.sizes.PFL_FONT_PX * 2
+ self.sizes.PURE_FAR_GAP
+ self.sizes.FAR_LOST_GAP
),
w=self.sizes.PFL_WIDTH,
h=self.sizes.PFL_FONT_PX,
)
@property
def lost(self):
return crop_xywh(self.img, self.lost_rect)
@property
def score_rect(self):
return self.construct_int_xywh_rect(
x=self.hor_mid - (self.sizes.SCORE_WIDTH / 2),
y=(
self.h_fixed_mid
+ self.sizes.SCORE_BOTTOM_FROM_VER_MID
- self.sizes.SCORE_FONT_PX
),
w=self.sizes.SCORE_WIDTH,
h=self.sizes.SCORE_FONT_PX,
)
@property
def score(self):
return crop_xywh(self.img, self.score_rect)
@property
def max_recall_rating_class_rect(self):
x = (
self.hor_mid
+ self.sizes.COVER_RIGHT_FROM_HOR_MID
- self.sizes.COVER_WIDTH
- 25
)
return self.construct_int_xywh_rect(
x=x,
y=(
self.h_fixed_mid
- self.sizes.SCORE_PANEL[1] / 2
- self.sizes.MAX_RECALL_RATING_CLASS_HEIGHT
),
w=self.sizes.MAX_RECALL_RATING_CLASS_WIDTH,
h=self.sizes.MAX_RECALL_RATING_CLASS_HEIGHT,
)
@property
def max_recall_rating_class(self):
return crop_xywh(self.img, self.max_recall_rating_class_rect)
@property
def title_rect(self):
return self.construct_int_xywh_rect(
x=0,
y=self.h_fixed_mid
+ self.sizes.TITLE_BOTTOM_FROM_VER_MID
- self.sizes.TITLE_FONT_PX,
w=self.hor_mid + self.sizes.TITLE_WIDTH_RIGHT,
h=self.sizes.TITLE_FONT_PX,
)
@property
def title(self):
return crop_xywh(self.img, self.title_rect)
@property
def cover_rect(self):
return self.construct_int_xywh_rect(
x=self.hor_mid
+ self.sizes.COVER_RIGHT_FROM_HOR_MID
- self.sizes.COVER_WIDTH,
y=self.h_fixed_mid - self.sizes.SCORE_PANEL[1] / 2,
w=self.sizes.COVER_WIDTH,
h=self.sizes.COVER_WIDTH,
)
@property
def cover(self):
return crop_xywh(self.img, self.cover_rect)

View File

@ -0,0 +1,9 @@
from cv2 import MORPH_CROSS, MORPH_ELLIPSE, MORPH_RECT, getStructuringElement
PFL_DENOISE_KERNEL = getStructuringElement(MORPH_RECT, [2, 2])
PFL_ERODE_KERNEL = getStructuringElement(MORPH_RECT, [3, 3])
PFL_CLOSE_HORIZONTAL_KERNEL = getStructuringElement(MORPH_RECT, [10, 1])
MAX_RECALL_DENOISE_KERNEL = getStructuringElement(MORPH_RECT, [3, 3])
MAX_RECALL_ERODE_KERNEL = getStructuringElement(MORPH_RECT, [2, 2])
MAX_RECALL_CLOSE_KERNEL = getStructuringElement(MORPH_RECT, [20, 1])

View File

@ -1,5 +1,5 @@
from cv2 import BORDER_CONSTANT, BORDER_ISOLATED, bitwise_or, dilate, inRange
from numpy import array, uint8
import cv2
from numpy import array, max, min, uint8
from .types import Mat
@ -26,7 +26,10 @@ __all__ = [
]
GRAY_MIN_HSV = array([0, 0, 70], uint8)
GRAY_MAX_HSV = array([0, 70, 200], uint8)
GRAY_MAX_HSV = array([0, 0, 200], uint8)
GRAY_MIN_BGR = array([50] * 3, uint8)
GRAY_MAX_BGR = array([160] * 3, uint8)
WHITE_MIN_HSV = array([0, 0, 240], uint8)
WHITE_MAX_HSV = array([179, 10, 255], uint8)
@ -44,39 +47,43 @@ BYD_MIN_HSV = array([170, 50, 50], uint8)
BYD_MAX_HSV = array([179, 210, 198], uint8)
def mask_gray(img_hsv: Mat):
mask = inRange(img_hsv, GRAY_MIN_HSV, GRAY_MAX_HSV)
mask = dilate(mask, (2, 2))
return mask
def mask_gray(__img_bgr: Mat):
# bgr_value_equal_mask = all(__img_bgr[:, 1:] == __img_bgr[:, :-1], axis=1)
bgr_value_equal_mask = max(__img_bgr, axis=2) - min(__img_bgr, axis=2) <= 5
img_bgr = __img_bgr.copy()
img_bgr[~bgr_value_equal_mask] = array([0, 0, 0], __img_bgr.dtype)
img_bgr = cv2.erode(img_bgr, cv2.getStructuringElement(cv2.MORPH_RECT, (2, 2)))
img_bgr = cv2.dilate(img_bgr, cv2.getStructuringElement(cv2.MORPH_RECT, (1, 1)))
return cv2.inRange(img_bgr, GRAY_MIN_BGR, GRAY_MAX_BGR)
def mask_white(img_hsv: Mat):
mask = inRange(img_hsv, WHITE_MIN_HSV, WHITE_MAX_HSV)
mask = dilate(mask, (5, 5), borderType=BORDER_CONSTANT | BORDER_ISOLATED)
mask = cv2.inRange(img_hsv, WHITE_MIN_HSV, WHITE_MAX_HSV)
mask = cv2.dilate(mask, cv2.getStructuringElement(cv2.MORPH_RECT, (2, 2)))
return mask
def mask_pst(img_hsv: Mat):
mask = inRange(img_hsv, PST_MIN_HSV, PST_MAX_HSV)
mask = dilate(mask, (1, 1))
mask = cv2.inRange(img_hsv, PST_MIN_HSV, PST_MAX_HSV)
mask = cv2.dilate(mask, (1, 1))
return mask
def mask_prs(img_hsv: Mat):
mask = inRange(img_hsv, PRS_MIN_HSV, PRS_MAX_HSV)
mask = dilate(mask, (1, 1))
mask = cv2.inRange(img_hsv, PRS_MIN_HSV, PRS_MAX_HSV)
mask = cv2.dilate(mask, (1, 1))
return mask
def mask_ftr(img_hsv: Mat):
mask = inRange(img_hsv, FTR_MIN_HSV, FTR_MAX_HSV)
mask = dilate(mask, (1, 1))
mask = cv2.inRange(img_hsv, FTR_MIN_HSV, FTR_MAX_HSV)
mask = cv2.dilate(mask, (1, 1))
return mask
def mask_byd(img_hsv: Mat):
mask = inRange(img_hsv, BYD_MIN_HSV, BYD_MAX_HSV)
mask = dilate(mask, (2, 2))
mask = cv2.inRange(img_hsv, BYD_MIN_HSV, BYD_MAX_HSV)
mask = cv2.dilate(mask, (2, 2))
return mask
@ -85,4 +92,4 @@ def mask_rating_class(img_hsv: Mat):
prs = mask_prs(img_hsv)
ftr = mask_ftr(img_hsv)
byd = mask_byd(img_hsv)
return bitwise_or(byd, bitwise_or(ftr, bitwise_or(pst, prs)))
return cv2.bitwise_or(byd, cv2.bitwise_or(ftr, cv2.bitwise_or(pst, prs)))

View File

@ -1,19 +1,8 @@
import re
from typing import Dict, List
from cv2 import (
CHAIN_APPROX_SIMPLE,
RETR_EXTERNAL,
TM_CCOEFF_NORMED,
boundingRect,
findContours,
imshow,
matchTemplate,
minMaxLoc,
rectangle,
resize,
waitKey,
)
import cv2
import numpy as np
from imutils import grab_contours
from imutils import resize as imutils_resize
from pytesseract import image_to_string
@ -24,7 +13,7 @@ from .template import (
load_builtin_digit_template,
matchTemplateMultiple,
)
from .types import Mat
from .types import Mat, cv2_ml_KNearest
__all__ = [
"group_numbers",
@ -155,6 +144,18 @@ def ocr_digits(
return int(joined_str) if joined_str else None
def ocr_digits_knn_model(img_gray: Mat, knn_model: cv2_ml_KNearest):
if img_gray.shape[:2] != (20, 20):
img = cv2.resize(img_gray, [20, 20])
else:
img = img_gray.copy()
img = img.astype(np.float32)
img = img.reshape([1, -1])
retval, _, _, _ = knn_model.findNearest(img, 10)
return int(retval)
def ocr_pure(img_masked: Mat):
template = load_builtin_digit_template("default")
return ocr_digits(
@ -173,9 +174,11 @@ def ocr_score(img_cropped: Mat):
templates = load_builtin_digit_template("default").regular
templates_dict = dict(enumerate(templates[:10]))
cnts = findContours(img_cropped.copy(), RETR_EXTERNAL, CHAIN_APPROX_SIMPLE)
cnts = cv2.findContours(
img_cropped.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE
)
cnts = grab_contours(cnts)
rects = [boundingRect(cnt) for cnt in cnts]
rects = [cv2.boundingRect(cnt) for cnt in cnts]
rects = sorted(rects, key=lambda r: r[0])
# debug
@ -190,9 +193,9 @@ def ocr_score(img_cropped: Mat):
digit_results: Dict[int, float] = {}
for digit, template in templates_dict.items():
template = resize(template, roi.shape[::-1])
template_result = matchTemplate(roi, template, TM_CCOEFF_NORMED)
min_val, max_val, min_loc, max_loc = minMaxLoc(template_result)
template = cv2.resize(template, roi.shape[::-1])
template_result = cv2.matchTemplate(roi, template, cv2.TM_CCOEFF_NORMED)
min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(template_result)
digit_results[digit] = max_val
digit_results = {k: v for k, v in digit_results.items() if v > 0.5}

View File

@ -4,12 +4,15 @@ from typing import Callable, Optional
from cv2 import COLOR_BGR2HSV, GaussianBlur, cvtColor, imread
from .crop import *
from .device import Device
# from .device import Device
from .mask import *
from .ocr import *
from .types import Mat
from .utils import imread_unicode
Device = None
__all__ = [
"process_digits_ocr_img",
"process_tesseract_ocr_img",

View File

@ -1,4 +1,42 @@
from collections.abc import Iterable
from typing import Any, NamedTuple, Protocol, Tuple, Union
import numpy as np
# from pylance
Mat = np.ndarray[int, np.dtype[np.generic]]
class XYWHRect(NamedTuple):
x: int
y: int
w: int
h: int
def __add__(self, other: Union["XYWHRect", Tuple[int, int, int, int]]):
if not isinstance(other, Iterable) or len(other) != 4:
raise ValueError()
return self.__class__(*[a + b for a, b in zip(self, other)])
def __sub__(self, other: Union["XYWHRect", Tuple[int, int, int, int]]):
if not isinstance(other, Iterable) or len(other) != 4:
raise ValueError()
return self.__class__(*[a - b for a, b in zip(self, other)])
class cv2_ml_StatModel(Protocol):
def predict(self, samples: np.ndarray, results: np.ndarray, flags: int = 0):
...
def train(self, samples: np.ndarray, layout: int, responses: np.ndarray):
...
class cv2_ml_KNearest(cv2_ml_StatModel, Protocol):
def findNearest(
self, samples: np.ndarray, k: int
) -> Tuple[Any, np.ndarray, np.ndarray, np.ndarray]:
"""cv.ml.KNearest.findNearest(samples, k[, results[, neighborResponses[, dist]]]) -> retval, results, neighborResponses, dist"""
...