refactor!: device versions

This commit is contained in:
2023-08-10 01:20:55 +08:00
parent c44813a212
commit b9583f8c6a
7 changed files with 115 additions and 190 deletions

View File

@ -0,0 +1,86 @@
from typing import List
import cv2
from ...crop import crop_xywh
from ...mask import mask_gray, mask_white
from ...ocr import ocr_digits_by_contour_knn, ocr_rating_class
from ...types import Mat, cv2_ml_KNearest
from ..shared import DeviceOcrResult
from .crop import *
from .definition import DeviceV1
class DeviceV1Ocr:
def __init__(self, device: DeviceV1, knn_model: cv2_ml_KNearest):
self.__device = device
self.__knn_model = knn_model
@property
def device(self):
return self.__device
@device.setter
def device(self, value):
self.__device = value
@property
def knn_model(self):
return self.__knn_model
@knn_model.setter
def knn_model(self, value):
self.__knn_model = value
def preprocess_score_roi(self, __roi_gray: Mat) -> List[Mat]:
roi_gray = __roi_gray.copy()
contours, _ = cv2.findContours(
roi_gray, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE
)
for contour in contours:
rect = cv2.boundingRect(contour)
if rect[3] > roi_gray.shape[0] * 0.6:
continue
roi_gray = cv2.fillPoly(roi_gray, [contour], 0)
return roi_gray
def ocr(self, img_bgr: Mat):
rating_class_roi = crop_to_rating_class(img_bgr, self.device)
rating_class = ocr_rating_class(rating_class_roi)
pfl_mr_roi = [
crop_to_pure(img_bgr, self.device),
crop_to_far(img_bgr, self.device),
crop_to_lost(img_bgr, self.device),
crop_to_max_recall(img_bgr, self.device),
]
pfl_mr_roi = [mask_gray(roi) for roi in pfl_mr_roi]
pure, far, lost = [
ocr_digits_by_contour_knn(roi, self.knn_model) for roi in pfl_mr_roi[:3]
]
max_recall_contours, _ = cv2.findContours(
pfl_mr_roi[3], cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE
)
max_recall_rects = [cv2.boundingRect(c) for c in max_recall_contours]
max_recall_rect = sorted(max_recall_rects, key=lambda r: r[0])[-1]
max_recall_roi = crop_xywh(img_bgr, max_recall_rect)
max_recall = ocr_digits_by_contour_knn(max_recall_roi, self.knn_model)
score_roi = crop_to_score(img_bgr, self.device)
score_roi = mask_white(score_roi)
score_roi = self.preprocess_score_roi(score_roi)
score = ocr_digits_by_contour_knn(score_roi, self.knn_model)
return DeviceOcrResult(
song_id=None,
title=None,
rating_class=rating_class,
pure=pure,
far=far,
lost=lost,
score=score,
max_recall=max_recall,
clear_type=None,
)