mirror of
https://github.com/283375/arcaea-offline-ocr.git
synced 2025-07-03 21:36:28 +00:00
refactor: module structure
This commit is contained in:
254
src/arcaea_offline_ocr/device/rois/masker/auto.py
Normal file
254
src/arcaea_offline_ocr/device/rois/masker/auto.py
Normal file
@ -0,0 +1,254 @@
|
||||
import cv2
|
||||
import numpy as np
|
||||
|
||||
from .common import DeviceRoisMasker
|
||||
|
||||
|
||||
class DeviceRoisMaskerAuto(DeviceRoisMasker):
|
||||
...
|
||||
|
||||
|
||||
class DeviceRoisMaskerAutoT1(DeviceRoisMaskerAuto):
|
||||
GRAY_BGR_MIN = np.array([50] * 3, np.uint8)
|
||||
GRAY_BGR_MAX = np.array([160] * 3, np.uint8)
|
||||
|
||||
WHITE_HSV_MIN = np.array([0, 0, 240], np.uint8)
|
||||
WHITE_HSV_MAX = np.array([179, 10, 255], np.uint8)
|
||||
|
||||
PST_HSV_MIN = np.array([100, 50, 80], np.uint8)
|
||||
PST_HSV_MAX = np.array([100, 255, 255], np.uint8)
|
||||
|
||||
PRS_HSV_MIN = np.array([43, 40, 75], np.uint8)
|
||||
PRS_HSV_MAX = np.array([50, 155, 190], np.uint8)
|
||||
|
||||
FTR_HSV_MIN = np.array([149, 30, 0], np.uint8)
|
||||
FTR_HSV_MAX = np.array([155, 181, 150], np.uint8)
|
||||
|
||||
BYD_HSV_MIN = np.array([170, 50, 50], np.uint8)
|
||||
BYD_HSV_MAX = np.array([179, 210, 198], np.uint8)
|
||||
|
||||
TRACK_LOST_HSV_MIN = np.array([170, 75, 90], np.uint8)
|
||||
TRACK_LOST_HSV_MAX = np.array([175, 170, 160], np.uint8)
|
||||
|
||||
TRACK_COMPLETE_HSV_MIN = np.array([140, 0, 50], np.uint8)
|
||||
TRACK_COMPLETE_HSV_MAX = np.array([145, 50, 130], np.uint8)
|
||||
|
||||
FULL_RECALL_HSV_MIN = np.array([140, 60, 80], np.uint8)
|
||||
FULL_RECALL_HSV_MAX = np.array([150, 130, 145], np.uint8)
|
||||
|
||||
PURE_MEMORY_HSV_MIN = np.array([90, 70, 80], np.uint8)
|
||||
PURE_MEMORY_HSV_MAX = np.array([110, 200, 175], np.uint8)
|
||||
|
||||
@classmethod
|
||||
def gray(cls, roi_bgr: cv2.Mat) -> cv2.Mat:
|
||||
bgr_value_equal_mask = np.max(roi_bgr, axis=2) - np.min(roi_bgr, axis=2) <= 5
|
||||
img_bgr = roi_bgr.copy()
|
||||
img_bgr[~bgr_value_equal_mask] = np.array([0, 0, 0], roi_bgr.dtype)
|
||||
img_bgr = cv2.erode(img_bgr, cv2.getStructuringElement(cv2.MORPH_RECT, (2, 2)))
|
||||
img_bgr = cv2.dilate(img_bgr, cv2.getStructuringElement(cv2.MORPH_RECT, (1, 1)))
|
||||
return cv2.inRange(img_bgr, cls.GRAY_BGR_MIN, cls.GRAY_BGR_MAX)
|
||||
|
||||
@classmethod
|
||||
def pure(cls, roi_bgr: cv2.Mat) -> cv2.Mat:
|
||||
return cls.gray(roi_bgr)
|
||||
|
||||
@classmethod
|
||||
def far(cls, roi_bgr: cv2.Mat) -> cv2.Mat:
|
||||
return cls.gray(roi_bgr)
|
||||
|
||||
@classmethod
|
||||
def lost(cls, roi_bgr: cv2.Mat) -> cv2.Mat:
|
||||
return cls.gray(roi_bgr)
|
||||
|
||||
@classmethod
|
||||
def score(cls, roi_bgr: cv2.Mat) -> cv2.Mat:
|
||||
return cv2.inRange(
|
||||
cv2.cvtColor(roi_bgr, cv2.COLOR_BGR2HSV),
|
||||
cls.WHITE_HSV_MIN,
|
||||
cls.WHITE_HSV_MAX,
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def rating_class_pst(cls, roi_bgr: cv2.Mat) -> cv2.Mat:
|
||||
return cv2.inRange(
|
||||
cv2.cvtColor(roi_bgr, cv2.COLOR_BGR2HSV), cls.PST_HSV_MIN, cls.PST_HSV_MAX
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def rating_class_prs(cls, roi_bgr: cv2.Mat) -> cv2.Mat:
|
||||
return cv2.inRange(
|
||||
cv2.cvtColor(roi_bgr, cv2.COLOR_BGR2HSV), cls.PRS_HSV_MIN, cls.PRS_HSV_MAX
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def rating_class_ftr(cls, roi_bgr: cv2.Mat) -> cv2.Mat:
|
||||
return cv2.inRange(
|
||||
cv2.cvtColor(roi_bgr, cv2.COLOR_BGR2HSV), cls.FTR_HSV_MIN, cls.FTR_HSV_MAX
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def rating_class_byd(cls, roi_bgr: cv2.Mat) -> cv2.Mat:
|
||||
return cv2.inRange(
|
||||
cv2.cvtColor(roi_bgr, cv2.COLOR_BGR2HSV), cls.BYD_HSV_MIN, cls.BYD_HSV_MAX
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def max_recall(cls, roi_bgr: cv2.Mat) -> cv2.Mat:
|
||||
return cls.gray(roi_bgr)
|
||||
|
||||
@classmethod
|
||||
def clear_status_track_lost(cls, roi_bgr: cv2.Mat) -> cv2.Mat:
|
||||
return cv2.inRange(
|
||||
cv2.cvtColor(roi_bgr, cv2.COLOR_BGR2HSV),
|
||||
cls.TRACK_LOST_HSV_MIN,
|
||||
cls.TRACK_LOST_HSV_MAX,
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def clear_status_track_complete(cls, roi_bgr: cv2.Mat) -> cv2.Mat:
|
||||
return cv2.inRange(
|
||||
cv2.cvtColor(roi_bgr, cv2.COLOR_BGR2HSV),
|
||||
cls.TRACK_COMPLETE_HSV_MIN,
|
||||
cls.TRACK_COMPLETE_HSV_MAX,
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def clear_status_full_recall(cls, roi_bgr: cv2.Mat) -> cv2.Mat:
|
||||
return cv2.inRange(
|
||||
cv2.cvtColor(roi_bgr, cv2.COLOR_BGR2HSV),
|
||||
cls.FULL_RECALL_HSV_MIN,
|
||||
cls.FULL_RECALL_HSV_MAX,
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def clear_status_pure_memory(cls, roi_bgr: cv2.Mat) -> cv2.Mat:
|
||||
return cv2.inRange(
|
||||
cv2.cvtColor(roi_bgr, cv2.COLOR_BGR2HSV),
|
||||
cls.PURE_MEMORY_HSV_MIN,
|
||||
cls.PURE_MEMORY_HSV_MAX,
|
||||
)
|
||||
|
||||
|
||||
class DeviceRoisMaskerAutoT2(DeviceRoisMaskerAuto):
|
||||
PFL_HSV_MIN = np.array([0, 0, 248], np.uint8)
|
||||
PFL_HSV_MAX = np.array([179, 10, 255], np.uint8)
|
||||
|
||||
WHITE_HSV_MIN = np.array([0, 0, 240], np.uint8)
|
||||
WHITE_HSV_MAX = np.array([179, 10, 255], np.uint8)
|
||||
|
||||
PST_HSV_MIN = np.array([100, 50, 80], np.uint8)
|
||||
PST_HSV_MAX = np.array([100, 255, 255], np.uint8)
|
||||
|
||||
PRS_HSV_MIN = np.array([43, 40, 75], np.uint8)
|
||||
PRS_HSV_MAX = np.array([50, 155, 190], np.uint8)
|
||||
|
||||
FTR_HSV_MIN = np.array([149, 30, 0], np.uint8)
|
||||
FTR_HSV_MAX = np.array([155, 181, 150], np.uint8)
|
||||
|
||||
BYD_HSV_MIN = np.array([170, 50, 50], np.uint8)
|
||||
BYD_HSV_MAX = np.array([179, 210, 198], np.uint8)
|
||||
|
||||
MAX_RECALL_HSV_MIN = np.array([125, 0, 0], np.uint8)
|
||||
MAX_RECALL_HSV_MAX = np.array([130, 100, 150], np.uint8)
|
||||
|
||||
TRACK_LOST_HSV_MIN = np.array([170, 75, 90], np.uint8)
|
||||
TRACK_LOST_HSV_MAX = np.array([175, 170, 160], np.uint8)
|
||||
|
||||
TRACK_COMPLETE_HSV_MIN = np.array([140, 0, 50], np.uint8)
|
||||
TRACK_COMPLETE_HSV_MAX = np.array([145, 50, 130], np.uint8)
|
||||
|
||||
FULL_RECALL_HSV_MIN = np.array([140, 60, 80], np.uint8)
|
||||
FULL_RECALL_HSV_MAX = np.array([150, 130, 145], np.uint8)
|
||||
|
||||
PURE_MEMORY_HSV_MIN = np.array([90, 70, 80], np.uint8)
|
||||
PURE_MEMORY_HSV_MAX = np.array([110, 200, 175], np.uint8)
|
||||
|
||||
@classmethod
|
||||
def pfl(cls, roi_bgr: cv2.Mat) -> cv2.Mat:
|
||||
return cv2.inRange(
|
||||
cv2.cvtColor(roi_bgr, cv2.COLOR_BGR2HSV), cls.PFL_HSV_MIN, cls.PFL_HSV_MAX
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def pure(cls, roi_bgr: cv2.Mat) -> cv2.Mat:
|
||||
return cls.pfl(roi_bgr)
|
||||
|
||||
@classmethod
|
||||
def far(cls, roi_bgr: cv2.Mat) -> cv2.Mat:
|
||||
return cls.pfl(roi_bgr)
|
||||
|
||||
@classmethod
|
||||
def lost(cls, roi_bgr: cv2.Mat) -> cv2.Mat:
|
||||
return cls.pfl(roi_bgr)
|
||||
|
||||
@classmethod
|
||||
def score(cls, roi_bgr: cv2.Mat) -> cv2.Mat:
|
||||
return cv2.inRange(
|
||||
cv2.cvtColor(roi_bgr, cv2.COLOR_BGR2HSV),
|
||||
cls.WHITE_HSV_MIN,
|
||||
cls.WHITE_HSV_MAX,
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def rating_class_pst(cls, roi_bgr: cv2.Mat) -> cv2.Mat:
|
||||
return cv2.inRange(
|
||||
cv2.cvtColor(roi_bgr, cv2.COLOR_BGR2HSV), cls.PST_HSV_MIN, cls.PST_HSV_MAX
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def rating_class_prs(cls, roi_bgr: cv2.Mat) -> cv2.Mat:
|
||||
return cv2.inRange(
|
||||
cv2.cvtColor(roi_bgr, cv2.COLOR_BGR2HSV), cls.PRS_HSV_MIN, cls.PRS_HSV_MAX
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def rating_class_ftr(cls, roi_bgr: cv2.Mat) -> cv2.Mat:
|
||||
return cv2.inRange(
|
||||
cv2.cvtColor(roi_bgr, cv2.COLOR_BGR2HSV), cls.FTR_HSV_MIN, cls.FTR_HSV_MAX
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def rating_class_byd(cls, roi_bgr: cv2.Mat) -> cv2.Mat:
|
||||
return cv2.inRange(
|
||||
cv2.cvtColor(roi_bgr, cv2.COLOR_BGR2HSV), cls.BYD_HSV_MIN, cls.BYD_HSV_MAX
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def max_recall(cls, roi_bgr: cv2.Mat) -> cv2.Mat:
|
||||
return cv2.inRange(
|
||||
cv2.cvtColor(roi_bgr, cv2.COLOR_BGR2HSV),
|
||||
cls.MAX_RECALL_HSV_MIN,
|
||||
cls.MAX_RECALL_HSV_MAX,
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def clear_status_track_lost(cls, roi_bgr: cv2.Mat) -> cv2.Mat:
|
||||
return cv2.inRange(
|
||||
cv2.cvtColor(roi_bgr, cv2.COLOR_BGR2HSV),
|
||||
cls.TRACK_LOST_HSV_MIN,
|
||||
cls.TRACK_LOST_HSV_MAX,
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def clear_status_track_complete(cls, roi_bgr: cv2.Mat) -> cv2.Mat:
|
||||
return cv2.inRange(
|
||||
cv2.cvtColor(roi_bgr, cv2.COLOR_BGR2HSV),
|
||||
cls.TRACK_COMPLETE_HSV_MIN,
|
||||
cls.TRACK_COMPLETE_HSV_MAX,
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def clear_status_full_recall(cls, roi_bgr: cv2.Mat) -> cv2.Mat:
|
||||
return cv2.inRange(
|
||||
cv2.cvtColor(roi_bgr, cv2.COLOR_BGR2HSV),
|
||||
cls.FULL_RECALL_HSV_MIN,
|
||||
cls.FULL_RECALL_HSV_MAX,
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def clear_status_pure_memory(cls, roi_bgr: cv2.Mat) -> cv2.Mat:
|
||||
return cv2.inRange(
|
||||
cv2.cvtColor(roi_bgr, cv2.COLOR_BGR2HSV),
|
||||
cls.PURE_MEMORY_HSV_MIN,
|
||||
cls.PURE_MEMORY_HSV_MAX,
|
||||
)
|
Reference in New Issue
Block a user