mirror of
https://github.com/283375/arcaea-offline-ocr.git
synced 2025-07-01 20:36:27 +00:00
Compare commits
1 Commits
2b18906935
...
master
Author | SHA1 | Date | |
---|---|---|---|
5215218526
|
15
.github/workflows/build-and-draft-release.yml
vendored
15
.github/workflows/build-and-draft-release.yml
vendored
@ -4,7 +4,9 @@ on:
|
|||||||
workflow_dispatch:
|
workflow_dispatch:
|
||||||
push:
|
push:
|
||||||
tags:
|
tags:
|
||||||
- "v[0-9]+.[0-9]+.[0-9]+"
|
# regex taken from
|
||||||
|
# https://packaging.python.org/en/latest/specifications/version-specifiers/#appendix-parsing-version-strings-with-regular-expressions
|
||||||
|
- '^([1-9][0-9]*!)?(0|[1-9][0-9]*)(\.(0|[1-9][0-9]*))*((a|b|rc)(0|[1-9][0-9]*))?(\.post(0|[1-9][0-9]*))?(\.dev(0|[1-9][0-9]*))?$'
|
||||||
|
|
||||||
permissions:
|
permissions:
|
||||||
contents: write
|
contents: write
|
||||||
@ -29,14 +31,6 @@ jobs:
|
|||||||
pip install build
|
pip install build
|
||||||
python -m build
|
python -m build
|
||||||
|
|
||||||
- name: Remove `v` in tag name
|
|
||||||
uses: mad9000/actions-find-and-replace-string@5
|
|
||||||
id: tagNameReplaced
|
|
||||||
with:
|
|
||||||
source: ${{ github.ref_name }}
|
|
||||||
find: "v"
|
|
||||||
replace: ""
|
|
||||||
|
|
||||||
- name: Draft a release
|
- name: Draft a release
|
||||||
uses: softprops/action-gh-release@v2
|
uses: softprops/action-gh-release@v2
|
||||||
with:
|
with:
|
||||||
@ -44,5 +38,4 @@ jobs:
|
|||||||
draft: true
|
draft: true
|
||||||
generate_release_notes: true
|
generate_release_notes: true
|
||||||
files: |
|
files: |
|
||||||
dist/arcaea_offline_ocr-${{ steps.tagNameReplaced.outputs.value }}*.whl
|
dist/*
|
||||||
dist/arcaea-offline-ocr-${{ steps.tagNameReplaced.outputs.value }}.tar.gz
|
|
||||||
|
@ -4,10 +4,11 @@ repos:
|
|||||||
hooks:
|
hooks:
|
||||||
- id: end-of-file-fixer
|
- id: end-of-file-fixer
|
||||||
- id: trailing-whitespace
|
- id: trailing-whitespace
|
||||||
|
- repo: https://github.com/psf/black
|
||||||
- repo: https://github.com/astral-sh/ruff-pre-commit
|
rev: 23.1.0
|
||||||
rev: v0.11.13
|
|
||||||
hooks:
|
hooks:
|
||||||
- id: ruff
|
- id: black
|
||||||
args: ["--fix"]
|
- repo: https://github.com/PyCQA/isort
|
||||||
- id: ruff-format
|
rev: 5.12.0
|
||||||
|
hooks:
|
||||||
|
- id: isort
|
||||||
|
@ -1,2 +1,3 @@
|
|||||||
numpy~=2.3
|
attrs==23.1.0
|
||||||
opencv-python~=4.11
|
numpy==1.26.1
|
||||||
|
opencv-python==4.8.1.78
|
||||||
|
@ -1,3 +1,4 @@
|
|||||||
from .crop import *
|
from .crop import *
|
||||||
from .device import *
|
from .device import *
|
||||||
|
from .ocr import *
|
||||||
from .utils import *
|
from .utils import *
|
||||||
|
@ -1,42 +1,52 @@
|
|||||||
|
from math import floor
|
||||||
from typing import List, Optional, Tuple
|
from typing import List, Optional, Tuple
|
||||||
|
|
||||||
import cv2
|
import cv2
|
||||||
import numpy as np
|
import numpy as np
|
||||||
|
|
||||||
from ....crop import crop_xywh
|
from ....crop import crop_xywh
|
||||||
|
from ....ocr import (
|
||||||
|
FixRects,
|
||||||
|
ocr_digits_by_contour_knn,
|
||||||
|
preprocess_hog,
|
||||||
|
resize_fill_square,
|
||||||
|
)
|
||||||
from ....phash_db import ImagePhashDatabase
|
from ....phash_db import ImagePhashDatabase
|
||||||
from ....types import Mat
|
from ....types import Mat
|
||||||
|
from ....utils import construct_int_xywh_rect
|
||||||
from ...shared import B30OcrResultItem
|
from ...shared import B30OcrResultItem
|
||||||
from .colors import (
|
from .colors import *
|
||||||
BYD_MAX_HSV,
|
|
||||||
BYD_MIN_HSV,
|
|
||||||
FAR_BG_MAX_HSV,
|
|
||||||
FAR_BG_MIN_HSV,
|
|
||||||
FTR_MAX_HSV,
|
|
||||||
FTR_MIN_HSV,
|
|
||||||
LOST_BG_MAX_HSV,
|
|
||||||
LOST_BG_MIN_HSV,
|
|
||||||
PRS_MAX_HSV,
|
|
||||||
PRS_MIN_HSV,
|
|
||||||
PURE_BG_MAX_HSV,
|
|
||||||
PURE_BG_MIN_HSV,
|
|
||||||
)
|
|
||||||
from .rois import ChieriBotV4Rois
|
from .rois import ChieriBotV4Rois
|
||||||
from ....providers.knn import OcrKNearestTextProvider
|
|
||||||
|
|
||||||
|
|
||||||
class ChieriBotV4Ocr:
|
class ChieriBotV4Ocr:
|
||||||
def __init__(
|
def __init__(
|
||||||
self,
|
self,
|
||||||
score_knn_provider: OcrKNearestTextProvider,
|
score_knn: cv2.ml.KNearest,
|
||||||
pfl_knn_provider: OcrKNearestTextProvider,
|
pfl_knn: cv2.ml.KNearest,
|
||||||
phash_db: ImagePhashDatabase,
|
phash_db: ImagePhashDatabase,
|
||||||
factor: float = 1.0,
|
factor: Optional[float] = 1.0,
|
||||||
):
|
):
|
||||||
|
self.__score_knn = score_knn
|
||||||
|
self.__pfl_knn = pfl_knn
|
||||||
self.__phash_db = phash_db
|
self.__phash_db = phash_db
|
||||||
self.__rois = ChieriBotV4Rois(factor)
|
self.__rois = ChieriBotV4Rois(factor)
|
||||||
self.pfl_knn_provider = pfl_knn_provider
|
|
||||||
self.score_knn_provider = score_knn_provider
|
@property
|
||||||
|
def score_knn(self):
|
||||||
|
return self.__score_knn
|
||||||
|
|
||||||
|
@score_knn.setter
|
||||||
|
def score_knn(self, knn_digits_model: cv2.ml.KNearest):
|
||||||
|
self.__score_knn = knn_digits_model
|
||||||
|
|
||||||
|
@property
|
||||||
|
def pfl_knn(self):
|
||||||
|
return self.__pfl_knn
|
||||||
|
|
||||||
|
@pfl_knn.setter
|
||||||
|
def pfl_knn(self, knn_digits_model: cv2.ml.KNearest):
|
||||||
|
self.__pfl_knn = knn_digits_model
|
||||||
|
|
||||||
@property
|
@property
|
||||||
def phash_db(self):
|
def phash_db(self):
|
||||||
@ -62,8 +72,9 @@ class ChieriBotV4Ocr:
|
|||||||
self.factor = img.shape[0] / 4400
|
self.factor = img.shape[0] / 4400
|
||||||
|
|
||||||
def ocr_component_rating_class(self, component_bgr: Mat) -> int:
|
def ocr_component_rating_class(self, component_bgr: Mat) -> int:
|
||||||
rating_class_rect = self.rois.component_rois.rating_class_rect.rounded()
|
rating_class_rect = construct_int_xywh_rect(
|
||||||
|
self.rois.component_rois.rating_class_rect
|
||||||
|
)
|
||||||
rating_class_roi = crop_xywh(component_bgr, rating_class_rect)
|
rating_class_roi = crop_xywh(component_bgr, rating_class_rect)
|
||||||
rating_class_roi = cv2.cvtColor(rating_class_roi, cv2.COLOR_BGR2HSV)
|
rating_class_roi = cv2.cvtColor(rating_class_roi, cv2.COLOR_BGR2HSV)
|
||||||
rating_class_masks = [
|
rating_class_masks = [
|
||||||
@ -78,7 +89,9 @@ class ChieriBotV4Ocr:
|
|||||||
return max(enumerate(rating_class_results), key=lambda i: i[1])[0] + 1
|
return max(enumerate(rating_class_results), key=lambda i: i[1])[0] + 1
|
||||||
|
|
||||||
def ocr_component_song_id(self, component_bgr: Mat):
|
def ocr_component_song_id(self, component_bgr: Mat):
|
||||||
jacket_rect = self.rois.component_rois.jacket_rect.floored()
|
jacket_rect = construct_int_xywh_rect(
|
||||||
|
self.rois.component_rois.jacket_rect, floor
|
||||||
|
)
|
||||||
jacket_roi = cv2.cvtColor(
|
jacket_roi = cv2.cvtColor(
|
||||||
crop_xywh(component_bgr, jacket_rect), cv2.COLOR_BGR2GRAY
|
crop_xywh(component_bgr, jacket_rect), cv2.COLOR_BGR2GRAY
|
||||||
)
|
)
|
||||||
@ -86,7 +99,7 @@ class ChieriBotV4Ocr:
|
|||||||
|
|
||||||
def ocr_component_score_knn(self, component_bgr: Mat) -> int:
|
def ocr_component_score_knn(self, component_bgr: Mat) -> int:
|
||||||
# sourcery skip: inline-immediately-returned-variable
|
# sourcery skip: inline-immediately-returned-variable
|
||||||
score_rect = self.rois.component_rois.score_rect.rounded()
|
score_rect = construct_int_xywh_rect(self.rois.component_rois.score_rect)
|
||||||
score_roi = cv2.cvtColor(
|
score_roi = cv2.cvtColor(
|
||||||
crop_xywh(component_bgr, score_rect), cv2.COLOR_BGR2GRAY
|
crop_xywh(component_bgr, score_rect), cv2.COLOR_BGR2GRAY
|
||||||
)
|
)
|
||||||
@ -104,13 +117,9 @@ class ChieriBotV4Ocr:
|
|||||||
if rect[3] > score_roi.shape[0] * 0.5:
|
if rect[3] > score_roi.shape[0] * 0.5:
|
||||||
continue
|
continue
|
||||||
score_roi = cv2.fillPoly(score_roi, [contour], 0)
|
score_roi = cv2.fillPoly(score_roi, [contour], 0)
|
||||||
|
return ocr_digits_by_contour_knn(score_roi, self.score_knn)
|
||||||
|
|
||||||
ocr_result = self.score_knn_provider.result(score_roi)
|
def find_pfl_rects(self, component_pfl_processed: Mat) -> List[List[int]]:
|
||||||
return int(ocr_result) if ocr_result else 0
|
|
||||||
|
|
||||||
def find_pfl_rects(
|
|
||||||
self, component_pfl_processed: Mat
|
|
||||||
) -> List[Tuple[int, int, int, int]]:
|
|
||||||
# sourcery skip: inline-immediately-returned-variable
|
# sourcery skip: inline-immediately-returned-variable
|
||||||
pfl_roi_find = cv2.morphologyEx(
|
pfl_roi_find = cv2.morphologyEx(
|
||||||
component_pfl_processed,
|
component_pfl_processed,
|
||||||
@ -137,7 +146,7 @@ class ChieriBotV4Ocr:
|
|||||||
return pfl_rects_adjusted
|
return pfl_rects_adjusted
|
||||||
|
|
||||||
def preprocess_component_pfl(self, component_bgr: Mat) -> Mat:
|
def preprocess_component_pfl(self, component_bgr: Mat) -> Mat:
|
||||||
pfl_rect = self.rois.component_rois.pfl_rect.rounded()
|
pfl_rect = construct_int_xywh_rect(self.rois.component_rois.pfl_rect)
|
||||||
pfl_roi = crop_xywh(component_bgr, pfl_rect)
|
pfl_roi = crop_xywh(component_bgr, pfl_rect)
|
||||||
pfl_roi_hsv = cv2.cvtColor(pfl_roi, cv2.COLOR_BGR2HSV)
|
pfl_roi_hsv = cv2.cvtColor(pfl_roi, cv2.COLOR_BGR2HSV)
|
||||||
|
|
||||||
@ -184,9 +193,25 @@ class ChieriBotV4Ocr:
|
|||||||
pure_far_lost = []
|
pure_far_lost = []
|
||||||
for pfl_roi_rect in pfl_rects:
|
for pfl_roi_rect in pfl_rects:
|
||||||
roi = crop_xywh(pfl_roi, pfl_roi_rect)
|
roi = crop_xywh(pfl_roi, pfl_roi_rect)
|
||||||
result = self.pfl_knn_provider.result(roi)
|
digit_contours, _ = cv2.findContours(
|
||||||
pure_far_lost.append(int(result) if result else None)
|
roi, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE
|
||||||
|
)
|
||||||
|
digit_rects = [cv2.boundingRect(c) for c in digit_contours]
|
||||||
|
digit_rects = FixRects.connect_broken(
|
||||||
|
digit_rects, roi.shape[1], roi.shape[0]
|
||||||
|
)
|
||||||
|
digit_rects = FixRects.split_connected(roi, digit_rects)
|
||||||
|
digit_rects = sorted(digit_rects, key=lambda r: r[0])
|
||||||
|
digits = []
|
||||||
|
for digit_rect in digit_rects:
|
||||||
|
digit = crop_xywh(roi, digit_rect)
|
||||||
|
digit = resize_fill_square(digit, 20)
|
||||||
|
digits.append(digit)
|
||||||
|
samples = preprocess_hog(digits)
|
||||||
|
|
||||||
|
_, results, _, _ = self.pfl_knn.findNearest(samples, 4)
|
||||||
|
results = [str(int(i)) for i in results.ravel()]
|
||||||
|
pure_far_lost.append(int("".join(results)))
|
||||||
return tuple(pure_far_lost)
|
return tuple(pure_far_lost)
|
||||||
except Exception:
|
except Exception:
|
||||||
return (None, None, None)
|
return (None, None, None)
|
||||||
|
@ -1,12 +1,12 @@
|
|||||||
from typing import List
|
from typing import List, Optional
|
||||||
|
|
||||||
from ....crop import crop_xywh
|
from ....crop import crop_xywh
|
||||||
from ....types import Mat, XYWHRect
|
from ....types import Mat, XYWHRect
|
||||||
from ....utils import apply_factor
|
from ....utils import apply_factor, construct_int_xywh_rect
|
||||||
|
|
||||||
|
|
||||||
class ChieriBotV4ComponentRois:
|
class ChieriBotV4ComponentRois:
|
||||||
def __init__(self, factor: float = 1.0):
|
def __init__(self, factor: Optional[float] = 1.0):
|
||||||
self.__factor = factor
|
self.__factor = factor
|
||||||
|
|
||||||
@property
|
@property
|
||||||
@ -19,11 +19,11 @@ class ChieriBotV4ComponentRois:
|
|||||||
|
|
||||||
@property
|
@property
|
||||||
def top_font_color_detect(self):
|
def top_font_color_detect(self):
|
||||||
return apply_factor(XYWHRect(35, 10, 120, 100), self.factor)
|
return apply_factor((35, 10, 120, 100), self.factor)
|
||||||
|
|
||||||
@property
|
@property
|
||||||
def bottom_font_color_detect(self):
|
def bottom_font_color_detect(self):
|
||||||
return apply_factor(XYWHRect(30, 125, 175, 110), self.factor)
|
return apply_factor((30, 125, 175, 110), self.factor)
|
||||||
|
|
||||||
@property
|
@property
|
||||||
def bg_point(self):
|
def bg_point(self):
|
||||||
@ -31,31 +31,31 @@ class ChieriBotV4ComponentRois:
|
|||||||
|
|
||||||
@property
|
@property
|
||||||
def rating_class_rect(self):
|
def rating_class_rect(self):
|
||||||
return apply_factor(XYWHRect(21, 40, 7, 20), self.factor)
|
return apply_factor((21, 40, 7, 20), self.factor)
|
||||||
|
|
||||||
@property
|
@property
|
||||||
def title_rect(self):
|
def title_rect(self):
|
||||||
return apply_factor(XYWHRect(35, 10, 430, 50), self.factor)
|
return apply_factor((35, 10, 430, 50), self.factor)
|
||||||
|
|
||||||
@property
|
@property
|
||||||
def jacket_rect(self):
|
def jacket_rect(self):
|
||||||
return apply_factor(XYWHRect(263, 0, 239, 239), self.factor)
|
return apply_factor((263, 0, 239, 239), self.factor)
|
||||||
|
|
||||||
@property
|
@property
|
||||||
def score_rect(self):
|
def score_rect(self):
|
||||||
return apply_factor(XYWHRect(30, 60, 270, 55), self.factor)
|
return apply_factor((30, 60, 270, 55), self.factor)
|
||||||
|
|
||||||
@property
|
@property
|
||||||
def pfl_rect(self):
|
def pfl_rect(self):
|
||||||
return apply_factor(XYWHRect(50, 125, 80, 100), self.factor)
|
return apply_factor((50, 125, 80, 100), self.factor)
|
||||||
|
|
||||||
@property
|
@property
|
||||||
def date_rect(self):
|
def date_rect(self):
|
||||||
return apply_factor(XYWHRect(205, 200, 225, 25), self.factor)
|
return apply_factor((205, 200, 225, 25), self.factor)
|
||||||
|
|
||||||
|
|
||||||
class ChieriBotV4Rois:
|
class ChieriBotV4Rois:
|
||||||
def __init__(self, factor: float = 1.0):
|
def __init__(self, factor: Optional[float] = 1.0):
|
||||||
self.__factor = factor
|
self.__factor = factor
|
||||||
self.__component_rois = ChieriBotV4ComponentRois(factor)
|
self.__component_rois = ChieriBotV4ComponentRois(factor)
|
||||||
|
|
||||||
@ -100,7 +100,9 @@ class ChieriBotV4Rois:
|
|||||||
def horizontal_items(self):
|
def horizontal_items(self):
|
||||||
return 3
|
return 3
|
||||||
|
|
||||||
vertical_items = 10
|
@property
|
||||||
|
def vertical_items(self):
|
||||||
|
return 10
|
||||||
|
|
||||||
@property
|
@property
|
||||||
def b33_vertical_gap(self):
|
def b33_vertical_gap(self):
|
||||||
@ -110,17 +112,16 @@ class ChieriBotV4Rois:
|
|||||||
first_rect = XYWHRect(x=self.left, y=self.top, w=self.width, h=self.height)
|
first_rect = XYWHRect(x=self.left, y=self.top, w=self.width, h=self.height)
|
||||||
results = []
|
results = []
|
||||||
|
|
||||||
last_rect = first_rect
|
|
||||||
for vi in range(self.vertical_items):
|
for vi in range(self.vertical_items):
|
||||||
rect = XYWHRect(*first_rect)
|
rect = XYWHRect(*first_rect)
|
||||||
rect += (0, (self.vertical_gap + self.height) * vi, 0, 0)
|
rect += (0, (self.vertical_gap + self.height) * vi, 0, 0)
|
||||||
for hi in range(self.horizontal_items):
|
for hi in range(self.horizontal_items):
|
||||||
if hi > 0:
|
if hi > 0:
|
||||||
rect += ((self.width + self.horizontal_gap), 0, 0, 0)
|
rect += ((self.width + self.horizontal_gap), 0, 0, 0)
|
||||||
results.append(crop_xywh(img_bgr, rect.rounded()))
|
int_rect = construct_int_xywh_rect(rect)
|
||||||
last_rect = rect
|
results.append(crop_xywh(img_bgr, int_rect))
|
||||||
|
|
||||||
last_rect += (
|
rect += (
|
||||||
-(self.width + self.horizontal_gap) * 2,
|
-(self.width + self.horizontal_gap) * 2,
|
||||||
self.height + self.b33_vertical_gap,
|
self.height + self.b33_vertical_gap,
|
||||||
0,
|
0,
|
||||||
@ -128,7 +129,8 @@ class ChieriBotV4Rois:
|
|||||||
)
|
)
|
||||||
for hi in range(self.horizontal_items):
|
for hi in range(self.horizontal_items):
|
||||||
if hi > 0:
|
if hi > 0:
|
||||||
last_rect += ((self.width + self.horizontal_gap), 0, 0, 0)
|
rect += ((self.width + self.horizontal_gap), 0, 0, 0)
|
||||||
results.append(crop_xywh(img_bgr, last_rect.rounded()))
|
int_rect = construct_int_xywh_rect(rect)
|
||||||
|
results.append(crop_xywh(img_bgr, int_rect))
|
||||||
|
|
||||||
return results
|
return results
|
||||||
|
@ -1,9 +1,10 @@
|
|||||||
from dataclasses import dataclass
|
|
||||||
from datetime import datetime
|
from datetime import datetime
|
||||||
from typing import Optional
|
from typing import Optional
|
||||||
|
|
||||||
|
import attrs
|
||||||
|
|
||||||
@dataclass
|
|
||||||
|
@attrs.define
|
||||||
class B30OcrResultItem:
|
class B30OcrResultItem:
|
||||||
rating_class: int
|
rating_class: int
|
||||||
score: int
|
score: int
|
||||||
|
@ -1,6 +0,0 @@
|
|||||||
from .ihdb import ImageHashDatabaseBuildTask, ImageHashesDatabaseBuilder
|
|
||||||
|
|
||||||
__all__ = [
|
|
||||||
"ImageHashDatabaseBuildTask",
|
|
||||||
"ImageHashesDatabaseBuilder",
|
|
||||||
]
|
|
@ -1,112 +0,0 @@
|
|||||||
from dataclasses import dataclass
|
|
||||||
from datetime import datetime, timezone
|
|
||||||
from typing import TYPE_CHECKING, Callable, List
|
|
||||||
|
|
||||||
import cv2
|
|
||||||
|
|
||||||
from arcaea_offline_ocr.core import hashers
|
|
||||||
from arcaea_offline_ocr.providers import ImageCategory
|
|
||||||
from arcaea_offline_ocr.providers.ihdb import (
|
|
||||||
PROP_KEY_BUILT_AT,
|
|
||||||
PROP_KEY_HASH_SIZE,
|
|
||||||
PROP_KEY_HIGH_FREQ_FACTOR,
|
|
||||||
ImageHashDatabaseIdProvider,
|
|
||||||
ImageHashType,
|
|
||||||
)
|
|
||||||
|
|
||||||
if TYPE_CHECKING:
|
|
||||||
from sqlite3 import Connection
|
|
||||||
|
|
||||||
from arcaea_offline_ocr.types import Mat
|
|
||||||
|
|
||||||
|
|
||||||
def _default_imread_gray(image_path: str):
|
|
||||||
return cv2.cvtColor(cv2.imread(image_path, cv2.IMREAD_COLOR), cv2.COLOR_BGR2GRAY)
|
|
||||||
|
|
||||||
|
|
||||||
@dataclass
|
|
||||||
class ImageHashDatabaseBuildTask:
|
|
||||||
image_path: str
|
|
||||||
image_id: str
|
|
||||||
category: ImageCategory
|
|
||||||
imread_function: Callable[[str], "Mat"] = _default_imread_gray
|
|
||||||
|
|
||||||
|
|
||||||
@dataclass
|
|
||||||
class _ImageHash:
|
|
||||||
image_id: str
|
|
||||||
category: ImageCategory
|
|
||||||
image_hash_type: ImageHashType
|
|
||||||
hash: bytes
|
|
||||||
|
|
||||||
|
|
||||||
class ImageHashesDatabaseBuilder:
|
|
||||||
@staticmethod
|
|
||||||
def __insert_property(conn: "Connection", key: str, value: str):
|
|
||||||
return conn.execute(
|
|
||||||
"INSERT INTO properties (key, value) VALUES (?, ?)",
|
|
||||||
(key, value),
|
|
||||||
)
|
|
||||||
|
|
||||||
@classmethod
|
|
||||||
def build(
|
|
||||||
cls,
|
|
||||||
conn: "Connection",
|
|
||||||
tasks: List[ImageHashDatabaseBuildTask],
|
|
||||||
*,
|
|
||||||
hash_size: int = 16,
|
|
||||||
high_freq_factor: int = 4,
|
|
||||||
):
|
|
||||||
hashes: List[_ImageHash] = []
|
|
||||||
|
|
||||||
for task in tasks:
|
|
||||||
img_gray = task.imread_function(task.image_path)
|
|
||||||
|
|
||||||
for hash_type, hash_mat in [
|
|
||||||
(
|
|
||||||
ImageHashType.AVERAGE,
|
|
||||||
hashers.average(img_gray, hash_size),
|
|
||||||
),
|
|
||||||
(
|
|
||||||
ImageHashType.DCT,
|
|
||||||
hashers.dct(img_gray, hash_size, high_freq_factor),
|
|
||||||
),
|
|
||||||
(
|
|
||||||
ImageHashType.DIFFERENCE,
|
|
||||||
hashers.difference(img_gray, hash_size),
|
|
||||||
),
|
|
||||||
]:
|
|
||||||
hashes.append(
|
|
||||||
_ImageHash(
|
|
||||||
image_id=task.image_id,
|
|
||||||
image_hash_type=hash_type,
|
|
||||||
category=task.category,
|
|
||||||
hash=ImageHashDatabaseIdProvider.hash_mat_to_bytes(hash_mat),
|
|
||||||
)
|
|
||||||
)
|
|
||||||
|
|
||||||
conn.execute("CREATE TABLE properties (`key` VARCHAR, `value` VARCHAR)")
|
|
||||||
conn.execute(
|
|
||||||
"""CREATE TABLE hashes (
|
|
||||||
`id` VARCHAR,
|
|
||||||
`category` INTEGER,
|
|
||||||
`hash_type` INTEGER,
|
|
||||||
`hash` BLOB
|
|
||||||
)"""
|
|
||||||
)
|
|
||||||
|
|
||||||
now = datetime.now(tz=timezone.utc)
|
|
||||||
timestamp = int(now.timestamp() * 1000)
|
|
||||||
|
|
||||||
cls.__insert_property(conn, PROP_KEY_HASH_SIZE, str(hash_size))
|
|
||||||
cls.__insert_property(conn, PROP_KEY_HIGH_FREQ_FACTOR, str(high_freq_factor))
|
|
||||||
cls.__insert_property(conn, PROP_KEY_BUILT_AT, str(timestamp))
|
|
||||||
|
|
||||||
conn.executemany(
|
|
||||||
"INSERT INTO hashes (`id`, `category`, `hash_type`, `hash`) VALUES (?, ?, ?, ?)",
|
|
||||||
[
|
|
||||||
(it.image_id, it.category.value, it.image_hash_type.value, it.hash)
|
|
||||||
for it in hashes
|
|
||||||
],
|
|
||||||
)
|
|
||||||
conn.commit()
|
|
@ -1,3 +0,0 @@
|
|||||||
from .index import average, dct, difference
|
|
||||||
|
|
||||||
__all__ = ["average", "dct", "difference"]
|
|
@ -1,7 +0,0 @@
|
|||||||
import cv2
|
|
||||||
|
|
||||||
from arcaea_offline_ocr.types import Mat
|
|
||||||
|
|
||||||
|
|
||||||
def _resize_image(src: Mat, dsize: ...) -> Mat:
|
|
||||||
return cv2.resize(src, dsize, fx=0, fy=0, interpolation=cv2.INTER_AREA)
|
|
@ -1,35 +0,0 @@
|
|||||||
import cv2
|
|
||||||
import numpy as np
|
|
||||||
|
|
||||||
from arcaea_offline_ocr.types import Mat
|
|
||||||
|
|
||||||
from ._common import _resize_image
|
|
||||||
|
|
||||||
|
|
||||||
def average(img_gray: Mat, hash_size: int) -> Mat:
|
|
||||||
img_resized = _resize_image(img_gray, (hash_size, hash_size))
|
|
||||||
diff = img_resized > img_resized.mean()
|
|
||||||
return diff.flatten()
|
|
||||||
|
|
||||||
|
|
||||||
def difference(img_gray: Mat, hash_size: int) -> Mat:
|
|
||||||
img_size = (hash_size + 1, hash_size)
|
|
||||||
img_resized = _resize_image(img_gray, img_size)
|
|
||||||
|
|
||||||
previous = img_resized[:, :-1]
|
|
||||||
current = img_resized[:, 1:]
|
|
||||||
diff = previous > current
|
|
||||||
return diff.flatten()
|
|
||||||
|
|
||||||
|
|
||||||
def dct(img_gray: Mat, hash_size: int = 16, high_freq_factor: int = 4) -> Mat:
|
|
||||||
# TODO: consistency?
|
|
||||||
img_size_base = hash_size * high_freq_factor
|
|
||||||
img_size = (img_size_base, img_size_base)
|
|
||||||
|
|
||||||
img_resized = _resize_image(img_gray, img_size)
|
|
||||||
img_resized = img_resized.astype(np.float32)
|
|
||||||
dct_mat = cv2.dct(img_resized)
|
|
||||||
|
|
||||||
hash_mat = dct_mat[:hash_size, :hash_size]
|
|
||||||
return hash_mat > hash_mat.mean()
|
|
@ -1,14 +1,15 @@
|
|||||||
from dataclasses import dataclass
|
|
||||||
from typing import Optional
|
from typing import Optional
|
||||||
|
|
||||||
|
import attrs
|
||||||
|
|
||||||
@dataclass
|
|
||||||
|
@attrs.define
|
||||||
class DeviceOcrResult:
|
class DeviceOcrResult:
|
||||||
rating_class: int
|
rating_class: int
|
||||||
|
pure: int
|
||||||
|
far: int
|
||||||
|
lost: int
|
||||||
score: int
|
score: int
|
||||||
pure: Optional[int] = None
|
|
||||||
far: Optional[int] = None
|
|
||||||
lost: Optional[int] = None
|
|
||||||
max_recall: Optional[int] = None
|
max_recall: Optional[int] = None
|
||||||
song_id: Optional[str] = None
|
song_id: Optional[str] = None
|
||||||
song_id_possibility: Optional[float] = None
|
song_id_possibility: Optional[float] = None
|
||||||
|
@ -1,8 +1,15 @@
|
|||||||
import cv2
|
import cv2
|
||||||
import numpy as np
|
import numpy as np
|
||||||
|
|
||||||
|
from ..crop import crop_xywh
|
||||||
|
from ..ocr import (
|
||||||
|
FixRects,
|
||||||
|
ocr_digit_samples_knn,
|
||||||
|
ocr_digits_by_contour_knn,
|
||||||
|
preprocess_hog,
|
||||||
|
resize_fill_square,
|
||||||
|
)
|
||||||
from ..phash_db import ImagePhashDatabase
|
from ..phash_db import ImagePhashDatabase
|
||||||
from ..providers.knn import OcrKNearestTextProvider
|
|
||||||
from ..types import Mat
|
from ..types import Mat
|
||||||
from .common import DeviceOcrResult
|
from .common import DeviceOcrResult
|
||||||
from .rois.extractor import DeviceRoisExtractor
|
from .rois.extractor import DeviceRoisExtractor
|
||||||
@ -14,37 +21,38 @@ class DeviceOcr:
|
|||||||
self,
|
self,
|
||||||
extractor: DeviceRoisExtractor,
|
extractor: DeviceRoisExtractor,
|
||||||
masker: DeviceRoisMasker,
|
masker: DeviceRoisMasker,
|
||||||
knn_provider: OcrKNearestTextProvider,
|
knn_model: cv2.ml.KNearest,
|
||||||
phash_db: ImagePhashDatabase,
|
phash_db: ImagePhashDatabase,
|
||||||
):
|
):
|
||||||
self.extractor = extractor
|
self.extractor = extractor
|
||||||
self.masker = masker
|
self.masker = masker
|
||||||
self.knn_provider = knn_provider
|
self.knn_model = knn_model
|
||||||
self.phash_db = phash_db
|
self.phash_db = phash_db
|
||||||
|
|
||||||
def pfl(self, roi_gray: Mat, factor: float = 1.25):
|
def pfl(self, roi_gray: Mat, factor: float = 1.25):
|
||||||
def contour_filter(cnt):
|
contours, _ = cv2.findContours(
|
||||||
return cv2.contourArea(cnt) >= 5 * factor
|
roi_gray, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE
|
||||||
|
|
||||||
contours = self.knn_provider.contours(roi_gray)
|
|
||||||
contours_filtered = self.knn_provider.contours(
|
|
||||||
roi_gray, contours_filter=contour_filter
|
|
||||||
)
|
)
|
||||||
|
filtered_contours = [c for c in contours if cv2.contourArea(c) >= 5 * factor]
|
||||||
|
rects = [cv2.boundingRect(c) for c in filtered_contours]
|
||||||
|
rects = FixRects.connect_broken(rects, roi_gray.shape[1], roi_gray.shape[0])
|
||||||
|
|
||||||
|
filtered_rects = [r for r in rects if r[2] >= 5 * factor and r[3] >= 6 * factor]
|
||||||
|
filtered_rects = FixRects.split_connected(roi_gray, filtered_rects)
|
||||||
|
filtered_rects = sorted(filtered_rects, key=lambda r: r[0])
|
||||||
|
|
||||||
roi_ocr = roi_gray.copy()
|
roi_ocr = roi_gray.copy()
|
||||||
contours_filtered_flattened = {tuple(c.flatten()) for c in contours_filtered}
|
filtered_contours_flattened = {tuple(c.flatten()) for c in filtered_contours}
|
||||||
for contour in contours:
|
for contour in contours:
|
||||||
if tuple(contour.flatten()) in contours_filtered_flattened:
|
if tuple(contour.flatten()) in filtered_contours_flattened:
|
||||||
continue
|
continue
|
||||||
roi_ocr = cv2.fillPoly(roi_ocr, [contour], [0])
|
roi_ocr = cv2.fillPoly(roi_ocr, [contour], [0])
|
||||||
|
digit_rois = [
|
||||||
|
resize_fill_square(crop_xywh(roi_ocr, r), 20) for r in filtered_rects
|
||||||
|
]
|
||||||
|
|
||||||
ocr_result = self.knn_provider.result(
|
samples = preprocess_hog(digit_rois)
|
||||||
roi_ocr,
|
return ocr_digit_samples_knn(samples, self.knn_model)
|
||||||
contours_filter=lambda cnt: cv2.contourArea(cnt) >= 5 * factor,
|
|
||||||
rects_filter=lambda rect: rect[2] >= 5 * factor and rect[3] >= 6 * factor,
|
|
||||||
)
|
|
||||||
|
|
||||||
return int(ocr_result) if ocr_result else 0
|
|
||||||
|
|
||||||
def pure(self):
|
def pure(self):
|
||||||
return self.pfl(self.masker.pure(self.extractor.pure))
|
return self.pfl(self.masker.pure(self.extractor.pure))
|
||||||
@ -57,14 +65,13 @@ class DeviceOcr:
|
|||||||
|
|
||||||
def score(self):
|
def score(self):
|
||||||
roi = self.masker.score(self.extractor.score)
|
roi = self.masker.score(self.extractor.score)
|
||||||
contours = self.knn_provider.contours(roi)
|
contours, _ = cv2.findContours(roi, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
|
||||||
for contour in contours:
|
for contour in contours:
|
||||||
if (
|
if (
|
||||||
cv2.boundingRect(contour)[3] < roi.shape[0] * 0.6
|
cv2.boundingRect(contour)[3] < roi.shape[0] * 0.6
|
||||||
): # h < score_component_h * 0.6
|
): # h < score_component_h * 0.6
|
||||||
roi = cv2.fillPoly(roi, [contour], [0])
|
roi = cv2.fillPoly(roi, [contour], [0])
|
||||||
ocr_result = self.knn_provider.result(roi)
|
return ocr_digits_by_contour_knn(roi, self.knn_model)
|
||||||
return int(ocr_result) if ocr_result else 0
|
|
||||||
|
|
||||||
def rating_class(self):
|
def rating_class(self):
|
||||||
roi = self.extractor.rating_class
|
roi = self.extractor.rating_class
|
||||||
@ -78,10 +85,9 @@ class DeviceOcr:
|
|||||||
return max(enumerate(results), key=lambda i: np.count_nonzero(i[1]))[0]
|
return max(enumerate(results), key=lambda i: np.count_nonzero(i[1]))[0]
|
||||||
|
|
||||||
def max_recall(self):
|
def max_recall(self):
|
||||||
ocr_result = self.knn_provider.result(
|
return ocr_digits_by_contour_knn(
|
||||||
self.masker.max_recall(self.extractor.max_recall)
|
self.masker.max_recall(self.extractor.max_recall), self.knn_model
|
||||||
)
|
)
|
||||||
return int(ocr_result) if ocr_result else None
|
|
||||||
|
|
||||||
def clear_status(self):
|
def clear_status(self):
|
||||||
roi = self.extractor.clear_status
|
roi = self.extractor.clear_status
|
||||||
@ -104,7 +110,7 @@ class DeviceOcr:
|
|||||||
@staticmethod
|
@staticmethod
|
||||||
def preprocess_char_icon(img_gray: Mat):
|
def preprocess_char_icon(img_gray: Mat):
|
||||||
h, w = img_gray.shape[:2]
|
h, w = img_gray.shape[:2]
|
||||||
img = cv2.copyMakeBorder(img_gray, max(w - h, 0), 0, 0, 0, cv2.BORDER_REPLICATE)
|
img = cv2.copyMakeBorder(img_gray, w - h, 0, 0, 0, cv2.BORDER_REPLICATE)
|
||||||
h, w = img.shape[:2]
|
h, w = img.shape[:2]
|
||||||
img = cv2.fillPoly(
|
img = cv2.fillPoly(
|
||||||
img,
|
img,
|
||||||
|
@ -1,19 +1,18 @@
|
|||||||
import logging
|
|
||||||
import math
|
import math
|
||||||
from typing import TYPE_CHECKING, Callable, Optional, Sequence, Tuple
|
from typing import Optional, Sequence, Tuple
|
||||||
|
|
||||||
import cv2
|
import cv2
|
||||||
import numpy as np
|
import numpy as np
|
||||||
|
|
||||||
from ..crop import crop_xywh
|
from .crop import crop_xywh
|
||||||
from .base import OcrTextProvider
|
from .types import Mat
|
||||||
|
|
||||||
if TYPE_CHECKING:
|
__all__ = [
|
||||||
from cv2.ml import KNearest
|
"FixRects",
|
||||||
|
"preprocess_hog",
|
||||||
from ..types import Mat
|
"ocr_digits_by_contour_get_samples",
|
||||||
|
"ocr_digits_by_contour_knn",
|
||||||
logger = logging.getLogger(__name__)
|
]
|
||||||
|
|
||||||
|
|
||||||
class FixRects:
|
class FixRects:
|
||||||
@ -69,7 +68,7 @@ class FixRects:
|
|||||||
|
|
||||||
@staticmethod
|
@staticmethod
|
||||||
def split_connected(
|
def split_connected(
|
||||||
img_masked: "Mat",
|
img_masked: Mat,
|
||||||
rects: Sequence[Tuple[int, int, int, int]],
|
rects: Sequence[Tuple[int, int, int, int]],
|
||||||
rect_wh_ratio: float = 1.05,
|
rect_wh_ratio: float = 1.05,
|
||||||
width_range_ratio: float = 0.1,
|
width_range_ratio: float = 0.1,
|
||||||
@ -119,7 +118,7 @@ class FixRects:
|
|||||||
return return_rects
|
return return_rects
|
||||||
|
|
||||||
|
|
||||||
def resize_fill_square(img: "Mat", target: int = 20):
|
def resize_fill_square(img: Mat, target: int = 20):
|
||||||
h, w = img.shape[:2]
|
h, w = img.shape[:2]
|
||||||
if h > w:
|
if h > w:
|
||||||
new_h = target
|
new_h = target
|
||||||
@ -153,88 +152,29 @@ def preprocess_hog(digit_rois):
|
|||||||
|
|
||||||
def ocr_digit_samples_knn(__samples, knn_model: cv2.ml.KNearest, k: int = 4):
|
def ocr_digit_samples_knn(__samples, knn_model: cv2.ml.KNearest, k: int = 4):
|
||||||
_, results, _, _ = knn_model.findNearest(__samples, k)
|
_, results, _, _ = knn_model.findNearest(__samples, k)
|
||||||
return [int(r) for r in results.ravel()]
|
result_list = [int(r) for r in results.ravel()]
|
||||||
|
result_str = "".join(str(r) for r in result_list if r > -1)
|
||||||
|
return int(result_str) if result_str else 0
|
||||||
|
|
||||||
|
|
||||||
class OcrKNearestTextProvider(OcrTextProvider):
|
def ocr_digits_by_contour_get_samples(__roi_gray: Mat, size: int):
|
||||||
_ContourFilter = Callable[["Mat"], bool]
|
roi = __roi_gray.copy()
|
||||||
_RectsFilter = Callable[[Sequence[int]], bool]
|
contours, _ = cv2.findContours(roi, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
|
||||||
|
rects = [cv2.boundingRect(c) for c in contours]
|
||||||
|
rects = FixRects.connect_broken(rects, roi.shape[1], roi.shape[0])
|
||||||
|
rects = FixRects.split_connected(roi, rects)
|
||||||
|
rects = sorted(rects, key=lambda r: r[0])
|
||||||
|
# digit_rois = [cv2.resize(crop_xywh(roi, rect), size) for rect in rects]
|
||||||
|
digit_rois = [resize_fill_square(crop_xywh(roi, rect), size) for rect in rects]
|
||||||
|
return preprocess_hog(digit_rois)
|
||||||
|
|
||||||
def __init__(self, model: "KNearest"):
|
|
||||||
self.model = model
|
|
||||||
|
|
||||||
def contours(
|
def ocr_digits_by_contour_knn(
|
||||||
self, img: "Mat", /, *, contours_filter: Optional[_ContourFilter] = None
|
__roi_gray: Mat,
|
||||||
):
|
knn_model: cv2.ml.KNearest,
|
||||||
cnts, _ = cv2.findContours(img, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
|
*,
|
||||||
if contours_filter:
|
k=4,
|
||||||
cnts = list(filter(contours_filter, cnts))
|
size: int = 20,
|
||||||
|
) -> int:
|
||||||
return cnts
|
samples = ocr_digits_by_contour_get_samples(__roi_gray, size)
|
||||||
|
return ocr_digit_samples_knn(samples, knn_model, k)
|
||||||
def result_raw(
|
|
||||||
self,
|
|
||||||
img: "Mat",
|
|
||||||
/,
|
|
||||||
*,
|
|
||||||
fix_rects: bool = True,
|
|
||||||
contours_filter: Optional[_ContourFilter] = None,
|
|
||||||
rects_filter: Optional[_RectsFilter] = None,
|
|
||||||
):
|
|
||||||
"""
|
|
||||||
:param img: grayscaled roi
|
|
||||||
"""
|
|
||||||
|
|
||||||
try:
|
|
||||||
cnts, _ = cv2.findContours(img, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
|
||||||
if contours_filter:
|
|
||||||
cnts = list(filter(contours_filter, cnts))
|
|
||||||
|
|
||||||
rects = [cv2.boundingRect(cnt) for cnt in cnts]
|
|
||||||
if fix_rects and rects_filter:
|
|
||||||
rects = FixRects.connect_broken(rects, img.shape[1], img.shape[0]) # type: ignore
|
|
||||||
rects = list(filter(rects_filter, rects))
|
|
||||||
rects = FixRects.split_connected(img, rects)
|
|
||||||
elif fix_rects:
|
|
||||||
rects = FixRects.connect_broken(rects, img.shape[1], img.shape[0]) # type: ignore
|
|
||||||
rects = FixRects.split_connected(img, rects)
|
|
||||||
elif rects_filter:
|
|
||||||
rects = list(filter(rects_filter, rects))
|
|
||||||
|
|
||||||
rects = sorted(rects, key=lambda r: r[0])
|
|
||||||
|
|
||||||
digits = []
|
|
||||||
for rect in rects:
|
|
||||||
digit = crop_xywh(img, rect)
|
|
||||||
digit = resize_fill_square(digit, 20)
|
|
||||||
digits.append(digit)
|
|
||||||
samples = preprocess_hog(digits)
|
|
||||||
return ocr_digit_samples_knn(samples, self.model)
|
|
||||||
except Exception:
|
|
||||||
logger.exception("Error occurred during KNearest OCR")
|
|
||||||
return None
|
|
||||||
|
|
||||||
def result(
|
|
||||||
self,
|
|
||||||
img: "Mat",
|
|
||||||
/,
|
|
||||||
*,
|
|
||||||
fix_rects: bool = True,
|
|
||||||
contours_filter: Optional[_ContourFilter] = None,
|
|
||||||
rects_filter: Optional[_RectsFilter] = None,
|
|
||||||
):
|
|
||||||
"""
|
|
||||||
:param img: grayscaled roi
|
|
||||||
"""
|
|
||||||
|
|
||||||
raw = self.result_raw(
|
|
||||||
img,
|
|
||||||
fix_rects=fix_rects,
|
|
||||||
contours_filter=contours_filter,
|
|
||||||
rects_filter=rects_filter,
|
|
||||||
)
|
|
||||||
return (
|
|
||||||
"".join(["".join(str(r) for r in raw if r > -1)])
|
|
||||||
if raw is not None
|
|
||||||
else None
|
|
||||||
)
|
|
@ -1,12 +0,0 @@
|
|||||||
from .base import ImageCategory, ImageIdProvider, ImageIdProviderResult, OcrTextProvider
|
|
||||||
from .ihdb import ImageHashDatabaseIdProvider
|
|
||||||
from .knn import OcrKNearestTextProvider
|
|
||||||
|
|
||||||
__all__ = [
|
|
||||||
"ImageCategory",
|
|
||||||
"ImageHashDatabaseIdProvider",
|
|
||||||
"OcrKNearestTextProvider",
|
|
||||||
"ImageIdProvider",
|
|
||||||
"OcrTextProvider",
|
|
||||||
"ImageIdProviderResult",
|
|
||||||
]
|
|
@ -1,38 +0,0 @@
|
|||||||
from abc import ABC, abstractmethod
|
|
||||||
from dataclasses import dataclass
|
|
||||||
from enum import IntEnum
|
|
||||||
from typing import TYPE_CHECKING, Any, Sequence, Optional
|
|
||||||
|
|
||||||
if TYPE_CHECKING:
|
|
||||||
from ..types import Mat
|
|
||||||
|
|
||||||
|
|
||||||
class OcrTextProvider(ABC):
|
|
||||||
@abstractmethod
|
|
||||||
def result_raw(self, img: "Mat", /, *args, **kwargs) -> Any: ...
|
|
||||||
@abstractmethod
|
|
||||||
def result(self, img: "Mat", /, *args, **kwargs) -> Optional[str]: ...
|
|
||||||
|
|
||||||
|
|
||||||
class ImageCategory(IntEnum):
|
|
||||||
JACKET = 0
|
|
||||||
PARTNER_ICON = 1
|
|
||||||
|
|
||||||
|
|
||||||
@dataclass(kw_only=True)
|
|
||||||
class ImageIdProviderResult:
|
|
||||||
image_id: str
|
|
||||||
category: ImageCategory
|
|
||||||
confidence: float
|
|
||||||
|
|
||||||
|
|
||||||
class ImageIdProvider(ABC):
|
|
||||||
@abstractmethod
|
|
||||||
def result(
|
|
||||||
self, img: "Mat", category: ImageCategory, /, *args, **kwargs
|
|
||||||
) -> ImageIdProviderResult: ...
|
|
||||||
|
|
||||||
@abstractmethod
|
|
||||||
def results(
|
|
||||||
self, img: "Mat", category: ImageCategory, /, *args, **kwargs
|
|
||||||
) -> Sequence[ImageIdProviderResult]: ...
|
|
@ -1,194 +0,0 @@
|
|||||||
import sqlite3
|
|
||||||
from dataclasses import dataclass
|
|
||||||
from datetime import datetime, timezone
|
|
||||||
from enum import IntEnum
|
|
||||||
from typing import TYPE_CHECKING, Any, Callable, List, Optional, TypeVar
|
|
||||||
|
|
||||||
from arcaea_offline_ocr.core import hashers
|
|
||||||
|
|
||||||
from .base import ImageCategory, ImageIdProvider, ImageIdProviderResult
|
|
||||||
|
|
||||||
if TYPE_CHECKING:
|
|
||||||
from arcaea_offline_ocr.types import Mat
|
|
||||||
|
|
||||||
|
|
||||||
T = TypeVar("T")
|
|
||||||
PROP_KEY_HASH_SIZE = "hash_size"
|
|
||||||
PROP_KEY_HIGH_FREQ_FACTOR = "high_freq_factor"
|
|
||||||
PROP_KEY_BUILT_AT = "built_at"
|
|
||||||
|
|
||||||
|
|
||||||
def _sql_hamming_distance(hash1: bytes, hash2: bytes):
|
|
||||||
assert len(hash1) == len(hash2), "hash size does not match!"
|
|
||||||
count = sum(1 for byte1, byte2 in zip(hash1, hash2) if byte1 != byte2)
|
|
||||||
return count
|
|
||||||
|
|
||||||
|
|
||||||
class ImageHashType(IntEnum):
|
|
||||||
AVERAGE = 0
|
|
||||||
DIFFERENCE = 1
|
|
||||||
DCT = 2
|
|
||||||
|
|
||||||
|
|
||||||
@dataclass(kw_only=True)
|
|
||||||
class ImageHashDatabaseIdProviderResult(ImageIdProviderResult):
|
|
||||||
image_hash_type: ImageHashType
|
|
||||||
|
|
||||||
|
|
||||||
class MissingPropertiesError(Exception):
|
|
||||||
keys: List[str]
|
|
||||||
|
|
||||||
def __init__(self, keys, *args):
|
|
||||||
super().__init__(*args)
|
|
||||||
self.keys = keys
|
|
||||||
|
|
||||||
|
|
||||||
class ImageHashDatabaseIdProvider(ImageIdProvider):
|
|
||||||
def __init__(self, conn: sqlite3.Connection):
|
|
||||||
self.conn = conn
|
|
||||||
self.conn.create_function("HAMMING_DISTANCE", 2, _sql_hamming_distance)
|
|
||||||
|
|
||||||
self.properties = {
|
|
||||||
PROP_KEY_HASH_SIZE: -1,
|
|
||||||
PROP_KEY_HIGH_FREQ_FACTOR: -1,
|
|
||||||
PROP_KEY_BUILT_AT: None,
|
|
||||||
}
|
|
||||||
|
|
||||||
self._hashes_count = {
|
|
||||||
ImageCategory.JACKET: 0,
|
|
||||||
ImageCategory.PARTNER_ICON: 0,
|
|
||||||
}
|
|
||||||
|
|
||||||
self._hash_length: int = -1
|
|
||||||
|
|
||||||
self._initialize()
|
|
||||||
|
|
||||||
@property
|
|
||||||
def hash_size(self) -> int:
|
|
||||||
return self.properties[PROP_KEY_HASH_SIZE]
|
|
||||||
|
|
||||||
@property
|
|
||||||
def high_freq_factor(self) -> int:
|
|
||||||
return self.properties[PROP_KEY_HIGH_FREQ_FACTOR]
|
|
||||||
|
|
||||||
@property
|
|
||||||
def built_at(self) -> Optional[datetime]:
|
|
||||||
return self.properties.get(PROP_KEY_BUILT_AT)
|
|
||||||
|
|
||||||
@property
|
|
||||||
def hash_length(self):
|
|
||||||
return self._hash_length
|
|
||||||
|
|
||||||
def _initialize(self):
|
|
||||||
def get_property(key, converter: Callable[[Any], T]) -> Optional[T]:
|
|
||||||
result = self.conn.execute(
|
|
||||||
"SELECT value FROM properties WHERE key = ?",
|
|
||||||
(key,),
|
|
||||||
).fetchone()
|
|
||||||
return converter(result[0]) if result is not None else None
|
|
||||||
|
|
||||||
def set_hashes_count(category: ImageCategory):
|
|
||||||
self._hashes_count[category] = self.conn.execute(
|
|
||||||
"SELECT COUNT(DISTINCT `id`) FROM hashes WHERE category = ?",
|
|
||||||
(category.value,),
|
|
||||||
).fetchone()[0]
|
|
||||||
|
|
||||||
properties_converter_map = {
|
|
||||||
PROP_KEY_HASH_SIZE: lambda x: int(x),
|
|
||||||
PROP_KEY_HIGH_FREQ_FACTOR: lambda x: int(x),
|
|
||||||
PROP_KEY_BUILT_AT: lambda ts: datetime.fromtimestamp(
|
|
||||||
int(ts) / 1000, tz=timezone.utc
|
|
||||||
),
|
|
||||||
}
|
|
||||||
required_properties = [PROP_KEY_HASH_SIZE, PROP_KEY_HIGH_FREQ_FACTOR]
|
|
||||||
|
|
||||||
missing_properties = []
|
|
||||||
for property_key, converter in properties_converter_map.items():
|
|
||||||
value = get_property(property_key, converter)
|
|
||||||
if value is None:
|
|
||||||
if property_key in required_properties:
|
|
||||||
missing_properties.append(property_key)
|
|
||||||
|
|
||||||
continue
|
|
||||||
|
|
||||||
self.properties[property_key] = value
|
|
||||||
|
|
||||||
if missing_properties:
|
|
||||||
raise MissingPropertiesError(keys=missing_properties)
|
|
||||||
|
|
||||||
set_hashes_count(ImageCategory.JACKET)
|
|
||||||
set_hashes_count(ImageCategory.PARTNER_ICON)
|
|
||||||
|
|
||||||
self._hash_length = self.hash_size**2
|
|
||||||
|
|
||||||
def lookup_hash(
|
|
||||||
self, category: ImageCategory, hash_type: ImageHashType, hash: bytes
|
|
||||||
) -> List[ImageHashDatabaseIdProviderResult]:
|
|
||||||
cursor = self.conn.execute(
|
|
||||||
"""
|
|
||||||
SELECT
|
|
||||||
`id`,
|
|
||||||
HAMMING_DISTANCE(hash, ?) AS distance
|
|
||||||
FROM hashes
|
|
||||||
WHERE category = ? AND hash_type = ?
|
|
||||||
ORDER BY distance ASC LIMIT 10""",
|
|
||||||
(hash, category.value, hash_type.value),
|
|
||||||
)
|
|
||||||
|
|
||||||
results = []
|
|
||||||
for id_, distance in cursor.fetchall():
|
|
||||||
results.append(
|
|
||||||
ImageHashDatabaseIdProviderResult(
|
|
||||||
image_id=id_,
|
|
||||||
category=category,
|
|
||||||
confidence=(self.hash_length - distance) / self.hash_length,
|
|
||||||
image_hash_type=hash_type,
|
|
||||||
)
|
|
||||||
)
|
|
||||||
|
|
||||||
return results
|
|
||||||
|
|
||||||
@staticmethod
|
|
||||||
def hash_mat_to_bytes(hash: "Mat") -> bytes:
|
|
||||||
return bytes([255 if b else 0 for b in hash.flatten()])
|
|
||||||
|
|
||||||
def results(self, img: "Mat", category: ImageCategory, /):
|
|
||||||
results: List[ImageHashDatabaseIdProviderResult] = []
|
|
||||||
|
|
||||||
results.extend(
|
|
||||||
self.lookup_hash(
|
|
||||||
category,
|
|
||||||
ImageHashType.AVERAGE,
|
|
||||||
self.hash_mat_to_bytes(hashers.average(img, self.hash_size)),
|
|
||||||
)
|
|
||||||
)
|
|
||||||
results.extend(
|
|
||||||
self.lookup_hash(
|
|
||||||
category,
|
|
||||||
ImageHashType.DIFFERENCE,
|
|
||||||
self.hash_mat_to_bytes(hashers.difference(img, self.hash_size)),
|
|
||||||
)
|
|
||||||
)
|
|
||||||
results.extend(
|
|
||||||
self.lookup_hash(
|
|
||||||
category,
|
|
||||||
ImageHashType.DCT,
|
|
||||||
self.hash_mat_to_bytes(
|
|
||||||
hashers.dct(img, self.hash_size, self.high_freq_factor)
|
|
||||||
),
|
|
||||||
)
|
|
||||||
)
|
|
||||||
|
|
||||||
return results
|
|
||||||
|
|
||||||
def result(
|
|
||||||
self,
|
|
||||||
img: "Mat",
|
|
||||||
category: ImageCategory,
|
|
||||||
/,
|
|
||||||
*,
|
|
||||||
hash_type: ImageHashType = ImageHashType.DCT,
|
|
||||||
):
|
|
||||||
return [
|
|
||||||
it for it in self.results(img, category) if it.image_hash_type == hash_type
|
|
||||||
][0]
|
|
@ -1,36 +1,25 @@
|
|||||||
from math import floor
|
from collections.abc import Iterable
|
||||||
from typing import Callable, NamedTuple, Union
|
from typing import NamedTuple, Tuple, Union
|
||||||
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
|
|
||||||
Mat = np.ndarray
|
Mat = np.ndarray
|
||||||
|
|
||||||
_IntOrFloat = Union[int, float]
|
|
||||||
|
|
||||||
|
|
||||||
class XYWHRect(NamedTuple):
|
class XYWHRect(NamedTuple):
|
||||||
x: _IntOrFloat
|
x: int
|
||||||
y: _IntOrFloat
|
y: int
|
||||||
w: _IntOrFloat
|
w: int
|
||||||
h: _IntOrFloat
|
h: int
|
||||||
|
|
||||||
def _to_int(self, func: Callable[[_IntOrFloat], int]):
|
def __add__(self, other: Union["XYWHRect", Tuple[int, int, int, int]]):
|
||||||
return (func(self.x), func(self.y), func(self.w), func(self.h))
|
if not isinstance(other, Iterable) or len(other) != 4:
|
||||||
|
raise ValueError()
|
||||||
def rounded(self):
|
|
||||||
return self._to_int(round)
|
|
||||||
|
|
||||||
def floored(self):
|
|
||||||
return self._to_int(floor)
|
|
||||||
|
|
||||||
def __add__(self, other):
|
|
||||||
if not isinstance(other, (list, tuple)) or len(other) != 4:
|
|
||||||
raise TypeError()
|
|
||||||
|
|
||||||
return self.__class__(*[a + b for a, b in zip(self, other)])
|
return self.__class__(*[a + b for a, b in zip(self, other)])
|
||||||
|
|
||||||
def __sub__(self, other):
|
def __sub__(self, other: Union["XYWHRect", Tuple[int, int, int, int]]):
|
||||||
if not isinstance(other, (list, tuple)) or len(other) != 4:
|
if not isinstance(other, Iterable) or len(other) != 4:
|
||||||
raise TypeError()
|
raise ValueError()
|
||||||
|
|
||||||
return self.__class__(*[a - b for a, b in zip(self, other)])
|
return self.__class__(*[a - b for a, b in zip(self, other)])
|
||||||
|
@ -1,5 +1,5 @@
|
|||||||
from collections.abc import Iterable
|
from collections.abc import Iterable
|
||||||
from typing import TypeVar, overload
|
from typing import Callable, TypeVar, Union, overload
|
||||||
|
|
||||||
import cv2
|
import cv2
|
||||||
import numpy as np
|
import numpy as np
|
||||||
@ -15,25 +15,32 @@ def imread_unicode(filepath: str, flags: int = cv2.IMREAD_UNCHANGED):
|
|||||||
return cv2.imdecode(np.fromfile(filepath, dtype=np.uint8), flags)
|
return cv2.imdecode(np.fromfile(filepath, dtype=np.uint8), flags)
|
||||||
|
|
||||||
|
|
||||||
@overload
|
def construct_int_xywh_rect(
|
||||||
def apply_factor(item: int, factor: float) -> float: ...
|
rect: XYWHRect, func: Callable[[Union[int, float]], int] = round
|
||||||
|
):
|
||||||
|
return XYWHRect(*[func(num) for num in rect])
|
||||||
|
|
||||||
|
|
||||||
@overload
|
@overload
|
||||||
def apply_factor(item: float, factor: float) -> float: ...
|
def apply_factor(item: int, factor: float) -> float:
|
||||||
|
...
|
||||||
|
|
||||||
|
|
||||||
|
@overload
|
||||||
|
def apply_factor(item: float, factor: float) -> float:
|
||||||
|
...
|
||||||
|
|
||||||
|
|
||||||
T = TypeVar("T", bound=Iterable)
|
T = TypeVar("T", bound=Iterable)
|
||||||
|
|
||||||
|
|
||||||
@overload
|
@overload
|
||||||
def apply_factor(item: T, factor: float) -> T: ...
|
def apply_factor(item: T, factor: float) -> T:
|
||||||
|
...
|
||||||
|
|
||||||
|
|
||||||
def apply_factor(item, factor: float):
|
def apply_factor(item, factor: float):
|
||||||
if isinstance(item, (int, float)):
|
if isinstance(item, (int, float)):
|
||||||
return item * factor
|
return item * factor
|
||||||
if isinstance(item, XYWHRect):
|
|
||||||
return item.__class__(*[i * factor for i in item])
|
|
||||||
if isinstance(item, Iterable):
|
if isinstance(item, Iterable):
|
||||||
return item.__class__([i * factor for i in item])
|
return item.__class__([i * factor for i in item])
|
||||||
|
Reference in New Issue
Block a user