2 Commits

Author SHA1 Message Date
00cd32dfdc feat: ETERNAL rating class support 2024-03-20 15:53:10 +08:00
17f6c2bac7 chore: code linting 2023-11-04 15:28:10 +08:00
8 changed files with 46 additions and 12 deletions

View File

@ -25,3 +25,14 @@ src_paths = ["src/arcaea_offline_ocr"]
[tool.pyright]
ignore = ["**/__debug*.*"]
[tool.pylint.main]
# extension-pkg-allow-list = ["cv2"]
generated-members = ["cv2.*"]
[tool.pylint.logging]
disable = [
"missing-module-docstring",
"missing-class-docstring",
"missing-function-docstring"
]

View File

@ -1,5 +1,5 @@
from datetime import datetime
from typing import Optional, Union
from typing import Optional
import attrs

View File

@ -67,8 +67,9 @@ class DeviceOcr:
roi = self.masker.score(self.extractor.score)
contours, _ = cv2.findContours(roi, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
for contour in contours:
x, y, w, h = cv2.boundingRect(contour)
if h < roi.shape[0] * 0.6:
if (
cv2.boundingRect(contour)[3] < roi.shape[0] * 0.6
): # h < score_component_h * 0.6
roi = cv2.fillPoly(roi, [contour], [0])
return ocr_digits_by_contour_knn(roi, self.knn_model)
@ -79,6 +80,7 @@ class DeviceOcr:
self.masker.rating_class_prs(roi),
self.masker.rating_class_ftr(roi),
self.masker.rating_class_byd(roi),
self.masker.rating_class_etr(roi),
]
return max(enumerate(results), key=lambda i: np.count_nonzero(i[1]))[0]

View File

@ -6,6 +6,8 @@ from .common import DeviceRoisMasker
class DeviceRoisMaskerAuto(DeviceRoisMasker):
# pylint: disable=abstract-method
@staticmethod
def mask_bgr_in_hsv(roi_bgr: Mat, hsv_lower: Mat, hsv_upper: Mat):
return cv2.inRange(
@ -32,6 +34,9 @@ class DeviceRoisMaskerAutoT1(DeviceRoisMaskerAuto):
BYD_HSV_MIN = np.array([170, 50, 50], np.uint8)
BYD_HSV_MAX = np.array([179, 210, 198], np.uint8)
ETR_HSV_MIN = np.array([130, 60, 80], np.uint8)
ETR_HSV_MAX = np.array([140, 145, 180], np.uint8)
TRACK_LOST_HSV_MIN = np.array([170, 75, 90], np.uint8)
TRACK_LOST_HSV_MAX = np.array([175, 170, 160], np.uint8)
@ -85,6 +90,10 @@ class DeviceRoisMaskerAutoT1(DeviceRoisMaskerAuto):
def rating_class_byd(cls, roi_bgr: Mat) -> Mat:
return cls.mask_bgr_in_hsv(roi_bgr, cls.BYD_HSV_MIN, cls.BYD_HSV_MAX)
@classmethod
def rating_class_etr(cls, roi_bgr: Mat) -> Mat:
return cls.mask_bgr_in_hsv(roi_bgr, cls.ETR_HSV_MIN, cls.ETR_HSV_MAX)
@classmethod
def max_recall(cls, roi_bgr: Mat) -> Mat:
return cls.gray(roi_bgr)
@ -133,6 +142,9 @@ class DeviceRoisMaskerAutoT2(DeviceRoisMaskerAuto):
BYD_HSV_MIN = np.array([170, 50, 50], np.uint8)
BYD_HSV_MAX = np.array([179, 210, 198], np.uint8)
ETR_HSV_MIN = np.array([130, 60, 80], np.uint8)
ETR_HSV_MAX = np.array([140, 145, 180], np.uint8)
MAX_RECALL_HSV_MIN = np.array([125, 0, 0], np.uint8)
MAX_RECALL_HSV_MAX = np.array([145, 100, 150], np.uint8)
@ -184,6 +196,10 @@ class DeviceRoisMaskerAutoT2(DeviceRoisMaskerAuto):
def rating_class_byd(cls, roi_bgr: Mat) -> Mat:
return cls.mask_bgr_in_hsv(roi_bgr, cls.BYD_HSV_MIN, cls.BYD_HSV_MAX)
@classmethod
def rating_class_etr(cls, roi_bgr: Mat) -> Mat:
return cls.mask_bgr_in_hsv(roi_bgr, cls.ETR_HSV_MIN, cls.ETR_HSV_MAX)
@classmethod
def max_recall(cls, roi_bgr: Mat) -> Mat:
return cls.mask_bgr_in_hsv(

View File

@ -34,6 +34,10 @@ class DeviceRoisMasker:
def rating_class_byd(cls, roi_bgr: Mat) -> Mat:
raise NotImplementedError()
@classmethod
def rating_class_etr(cls, roi_bgr: Mat) -> Mat:
raise NotImplementedError()
@classmethod
def max_recall(cls, roi_bgr: Mat) -> Mat:
raise NotImplementedError()

View File

@ -36,7 +36,7 @@ class FixRects:
if rect in consumed_rects:
continue
x, y, w, h = rect
x, _, w, h = rect
# grab those small rects
if not img_height * 0.1 <= h <= img_height * 0.6:
continue
@ -46,7 +46,7 @@ class FixRects:
for other_rect in rects:
if rect == other_rect:
continue
ox, oy, ow, oh = other_rect
ox, _, ow, _ = other_rect
if abs(x - ox) < tolerance and abs((x + w) - (ox + ow)) < tolerance:
group.append(other_rect)

View File

@ -12,7 +12,8 @@ def phash_opencv(img_gray, hash_size=8, highfreq_factor=4):
"""
Perceptual Hash computation.
Implementation follows http://www.hackerfactor.com/blog/index.php?/archives/432-Looks-Like-It.html
Implementation follows
http://www.hackerfactor.com/blog/index.php?/archives/432-Looks-Like-It.html
Adapted from `imagehash.phash`, pure opencv implementation
@ -69,14 +70,14 @@ class ImagePhashDatabase:
self.partner_icon_ids: List[str] = []
self.partner_icon_hashes = []
for id, hash in zip(self.ids, self.hashes):
id_splitted = id.split("||")
for _id, _hash in zip(self.ids, self.hashes):
id_splitted = _id.split("||")
if len(id_splitted) > 1 and id_splitted[0] == "partner_icon":
self.partner_icon_ids.append(id_splitted[1])
self.partner_icon_hashes.append(hash)
self.partner_icon_hashes.append(_hash)
else:
self.jacket_ids.append(id)
self.jacket_hashes.append(hash)
self.jacket_ids.append(_id)
self.jacket_hashes.append(_hash)
def calculate_phash(self, img_gray: Mat):
return phash_opencv(

View File

@ -42,5 +42,5 @@ def apply_factor(item: T, factor: float) -> T:
def apply_factor(item, factor: float):
if isinstance(item, (int, float)):
return item * factor
elif isinstance(item, Iterable):
if isinstance(item, Iterable):
return item.__class__([i * factor for i in item])