mirror of
https://github.com/283375/arcaea-offline-ocr.git
synced 2025-07-02 21:06:27 +00:00
Compare commits
2 Commits
v0.0.97
...
00cd32dfdc
Author | SHA1 | Date | |
---|---|---|---|
00cd32dfdc
|
|||
17f6c2bac7 |
@ -25,3 +25,14 @@ src_paths = ["src/arcaea_offline_ocr"]
|
||||
|
||||
[tool.pyright]
|
||||
ignore = ["**/__debug*.*"]
|
||||
|
||||
[tool.pylint.main]
|
||||
# extension-pkg-allow-list = ["cv2"]
|
||||
generated-members = ["cv2.*"]
|
||||
|
||||
[tool.pylint.logging]
|
||||
disable = [
|
||||
"missing-module-docstring",
|
||||
"missing-class-docstring",
|
||||
"missing-function-docstring"
|
||||
]
|
||||
|
@ -1,5 +1,5 @@
|
||||
from datetime import datetime
|
||||
from typing import Optional, Union
|
||||
from typing import Optional
|
||||
|
||||
import attrs
|
||||
|
||||
|
@ -67,8 +67,9 @@ class DeviceOcr:
|
||||
roi = self.masker.score(self.extractor.score)
|
||||
contours, _ = cv2.findContours(roi, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
|
||||
for contour in contours:
|
||||
x, y, w, h = cv2.boundingRect(contour)
|
||||
if h < roi.shape[0] * 0.6:
|
||||
if (
|
||||
cv2.boundingRect(contour)[3] < roi.shape[0] * 0.6
|
||||
): # h < score_component_h * 0.6
|
||||
roi = cv2.fillPoly(roi, [contour], [0])
|
||||
return ocr_digits_by_contour_knn(roi, self.knn_model)
|
||||
|
||||
@ -79,6 +80,7 @@ class DeviceOcr:
|
||||
self.masker.rating_class_prs(roi),
|
||||
self.masker.rating_class_ftr(roi),
|
||||
self.masker.rating_class_byd(roi),
|
||||
self.masker.rating_class_etr(roi),
|
||||
]
|
||||
return max(enumerate(results), key=lambda i: np.count_nonzero(i[1]))[0]
|
||||
|
||||
|
@ -6,6 +6,8 @@ from .common import DeviceRoisMasker
|
||||
|
||||
|
||||
class DeviceRoisMaskerAuto(DeviceRoisMasker):
|
||||
# pylint: disable=abstract-method
|
||||
|
||||
@staticmethod
|
||||
def mask_bgr_in_hsv(roi_bgr: Mat, hsv_lower: Mat, hsv_upper: Mat):
|
||||
return cv2.inRange(
|
||||
@ -32,6 +34,9 @@ class DeviceRoisMaskerAutoT1(DeviceRoisMaskerAuto):
|
||||
BYD_HSV_MIN = np.array([170, 50, 50], np.uint8)
|
||||
BYD_HSV_MAX = np.array([179, 210, 198], np.uint8)
|
||||
|
||||
ETR_HSV_MIN = np.array([130, 60, 80], np.uint8)
|
||||
ETR_HSV_MAX = np.array([140, 145, 180], np.uint8)
|
||||
|
||||
TRACK_LOST_HSV_MIN = np.array([170, 75, 90], np.uint8)
|
||||
TRACK_LOST_HSV_MAX = np.array([175, 170, 160], np.uint8)
|
||||
|
||||
@ -85,6 +90,10 @@ class DeviceRoisMaskerAutoT1(DeviceRoisMaskerAuto):
|
||||
def rating_class_byd(cls, roi_bgr: Mat) -> Mat:
|
||||
return cls.mask_bgr_in_hsv(roi_bgr, cls.BYD_HSV_MIN, cls.BYD_HSV_MAX)
|
||||
|
||||
@classmethod
|
||||
def rating_class_etr(cls, roi_bgr: Mat) -> Mat:
|
||||
return cls.mask_bgr_in_hsv(roi_bgr, cls.ETR_HSV_MIN, cls.ETR_HSV_MAX)
|
||||
|
||||
@classmethod
|
||||
def max_recall(cls, roi_bgr: Mat) -> Mat:
|
||||
return cls.gray(roi_bgr)
|
||||
@ -133,6 +142,9 @@ class DeviceRoisMaskerAutoT2(DeviceRoisMaskerAuto):
|
||||
BYD_HSV_MIN = np.array([170, 50, 50], np.uint8)
|
||||
BYD_HSV_MAX = np.array([179, 210, 198], np.uint8)
|
||||
|
||||
ETR_HSV_MIN = np.array([130, 60, 80], np.uint8)
|
||||
ETR_HSV_MAX = np.array([140, 145, 180], np.uint8)
|
||||
|
||||
MAX_RECALL_HSV_MIN = np.array([125, 0, 0], np.uint8)
|
||||
MAX_RECALL_HSV_MAX = np.array([145, 100, 150], np.uint8)
|
||||
|
||||
@ -184,6 +196,10 @@ class DeviceRoisMaskerAutoT2(DeviceRoisMaskerAuto):
|
||||
def rating_class_byd(cls, roi_bgr: Mat) -> Mat:
|
||||
return cls.mask_bgr_in_hsv(roi_bgr, cls.BYD_HSV_MIN, cls.BYD_HSV_MAX)
|
||||
|
||||
@classmethod
|
||||
def rating_class_etr(cls, roi_bgr: Mat) -> Mat:
|
||||
return cls.mask_bgr_in_hsv(roi_bgr, cls.ETR_HSV_MIN, cls.ETR_HSV_MAX)
|
||||
|
||||
@classmethod
|
||||
def max_recall(cls, roi_bgr: Mat) -> Mat:
|
||||
return cls.mask_bgr_in_hsv(
|
||||
|
@ -34,6 +34,10 @@ class DeviceRoisMasker:
|
||||
def rating_class_byd(cls, roi_bgr: Mat) -> Mat:
|
||||
raise NotImplementedError()
|
||||
|
||||
@classmethod
|
||||
def rating_class_etr(cls, roi_bgr: Mat) -> Mat:
|
||||
raise NotImplementedError()
|
||||
|
||||
@classmethod
|
||||
def max_recall(cls, roi_bgr: Mat) -> Mat:
|
||||
raise NotImplementedError()
|
||||
|
@ -36,7 +36,7 @@ class FixRects:
|
||||
if rect in consumed_rects:
|
||||
continue
|
||||
|
||||
x, y, w, h = rect
|
||||
x, _, w, h = rect
|
||||
# grab those small rects
|
||||
if not img_height * 0.1 <= h <= img_height * 0.6:
|
||||
continue
|
||||
@ -46,7 +46,7 @@ class FixRects:
|
||||
for other_rect in rects:
|
||||
if rect == other_rect:
|
||||
continue
|
||||
ox, oy, ow, oh = other_rect
|
||||
ox, _, ow, _ = other_rect
|
||||
if abs(x - ox) < tolerance and abs((x + w) - (ox + ow)) < tolerance:
|
||||
group.append(other_rect)
|
||||
|
||||
|
@ -12,7 +12,8 @@ def phash_opencv(img_gray, hash_size=8, highfreq_factor=4):
|
||||
"""
|
||||
Perceptual Hash computation.
|
||||
|
||||
Implementation follows http://www.hackerfactor.com/blog/index.php?/archives/432-Looks-Like-It.html
|
||||
Implementation follows
|
||||
http://www.hackerfactor.com/blog/index.php?/archives/432-Looks-Like-It.html
|
||||
|
||||
Adapted from `imagehash.phash`, pure opencv implementation
|
||||
|
||||
@ -69,14 +70,14 @@ class ImagePhashDatabase:
|
||||
self.partner_icon_ids: List[str] = []
|
||||
self.partner_icon_hashes = []
|
||||
|
||||
for id, hash in zip(self.ids, self.hashes):
|
||||
id_splitted = id.split("||")
|
||||
for _id, _hash in zip(self.ids, self.hashes):
|
||||
id_splitted = _id.split("||")
|
||||
if len(id_splitted) > 1 and id_splitted[0] == "partner_icon":
|
||||
self.partner_icon_ids.append(id_splitted[1])
|
||||
self.partner_icon_hashes.append(hash)
|
||||
self.partner_icon_hashes.append(_hash)
|
||||
else:
|
||||
self.jacket_ids.append(id)
|
||||
self.jacket_hashes.append(hash)
|
||||
self.jacket_ids.append(_id)
|
||||
self.jacket_hashes.append(_hash)
|
||||
|
||||
def calculate_phash(self, img_gray: Mat):
|
||||
return phash_opencv(
|
||||
|
@ -42,5 +42,5 @@ def apply_factor(item: T, factor: float) -> T:
|
||||
def apply_factor(item, factor: float):
|
||||
if isinstance(item, (int, float)):
|
||||
return item * factor
|
||||
elif isinstance(item, Iterable):
|
||||
if isinstance(item, Iterable):
|
||||
return item.__class__([i * factor for i in item])
|
||||
|
Reference in New Issue
Block a user