10 Commits

Author SHA1 Message Date
619bff2ea4 feat: image hashes database 2025-01-10 23:55:37 +08:00
413188d86a feat: core hashers 2025-01-10 23:54:37 +08:00
cfe8de043c chore: pre-commit hooks update 2025-01-10 23:54:00 +08:00
3f6c08b2ad fix: preprocess_char_icon copyMakeBorder edge case 2025-01-10 23:46:50 +08:00
854d5558cf chore: v0.0.99 2024-06-19 22:23:30 +08:00
df77421a34 impr: DeviceRoisMaskerAutoT2 pfl color range (#11) 2024-06-05 18:46:16 +08:00
2241230a7a chore: v0.0.98 2024-04-01 00:32:34 +08:00
fb4b1fb9b8 ci: build package using github actions 2024-04-01 00:26:12 +08:00
00cd32dfdc feat: ETERNAL rating class support 2024-03-20 15:53:10 +08:00
17f6c2bac7 chore: code linting 2023-11-04 15:28:10 +08:00
18 changed files with 439 additions and 24 deletions

View File

@ -0,0 +1,48 @@
name: "Build and draft a release"
on:
workflow_dispatch:
push:
tags:
- "v[0-9]+.[0-9]+.[0-9]+"
permissions:
contents: write
discussions: write
jobs:
build-and-draft-release:
runs-on: ubuntu-latest
steps:
- name: Checkout
uses: actions/checkout@v4
with:
fetch-depth: 0
- name: Set up Python environment
uses: actions/setup-python@v5
with:
python-version: "3.x"
- name: Build package
run: |
pip install build
python -m build
- name: Remove `v` in tag name
uses: mad9000/actions-find-and-replace-string@5
id: tagNameReplaced
with:
source: ${{ github.ref_name }}
find: "v"
replace: ""
- name: Draft a release
uses: softprops/action-gh-release@v2
with:
discussion_category_name: New releases
draft: true
generate_release_notes: true
files: |
dist/arcaea_offline_ocr-${{ steps.tagNameReplaced.outputs.value }}*.whl
dist/arcaea-offline-ocr-${{ steps.tagNameReplaced.outputs.value }}.tar.gz

View File

@ -4,11 +4,9 @@ repos:
hooks:
- id: end-of-file-fixer
- id: trailing-whitespace
- repo: https://github.com/psf/black
rev: 23.1.0
- repo: https://github.com/astral-sh/ruff-pre-commit
rev: v0.9.0
hooks:
- id: black
- repo: https://github.com/PyCQA/isort
rev: 5.12.0
hooks:
- id: isort
- id: ruff
args: ["--fix"]
- id: ruff-format

View File

@ -4,7 +4,7 @@ build-backend = "setuptools.build_meta"
[project]
name = "arcaea-offline-ocr"
version = "0.0.97"
version = "0.0.99"
authors = [{ name = "283375", email = "log_283375@163.com" }]
description = "Extract your Arcaea play result from screenshot."
readme = "README.md"
@ -16,8 +16,8 @@ classifiers = [
]
[project.urls]
"Homepage" = "https://github.com/283375/arcaea-offline-ocr"
"Bug Tracker" = "https://github.com/283375/arcaea-offline-ocr/issues"
"Homepage" = "https://github.com/ArcaeaOffline/core-ocr"
"Bug Tracker" = "https://github.com/ArcaeaOffline/core-ocr/issues"
[tool.isort]
profile = "black"
@ -25,3 +25,14 @@ src_paths = ["src/arcaea_offline_ocr"]
[tool.pyright]
ignore = ["**/__debug*.*"]
[tool.pylint.main]
# extension-pkg-allow-list = ["cv2"]
generated-members = ["cv2.*"]
[tool.pylint.logging]
disable = [
"missing-module-docstring",
"missing-class-docstring",
"missing-function-docstring"
]

View File

@ -1,5 +1,5 @@
from datetime import datetime
from typing import Optional, Union
from typing import Optional
import attrs

View File

View File

@ -0,0 +1,3 @@
from .index import average, dct, difference
__all__ = ["average", "dct", "difference"]

View File

@ -0,0 +1,7 @@
import cv2
from arcaea_offline_ocr.types import Mat
def _resize_image(src: Mat, dsize: ...) -> Mat:
return cv2.resize(src, dsize, fx=0, fy=0, interpolation=cv2.INTER_AREA)

View File

@ -0,0 +1,35 @@
import cv2
import numpy as np
from arcaea_offline_ocr.types import Mat
from ._common import _resize_image
def average(img_gray: Mat, hash_size: int) -> Mat:
img_resized = _resize_image(img_gray, (hash_size, hash_size))
diff = img_resized > img_resized.mean()
return diff.flatten()
def difference(img_gray: Mat, hash_size: int) -> Mat:
img_size = (hash_size + 1, hash_size)
img_resized = _resize_image(img_gray, img_size)
previous = img_resized[:, :-1]
current = img_resized[:, 1:]
diff = previous > current
return diff.flatten()
def dct(img_gray: Mat, hash_size: int = 16, high_freq_factor: int = 4) -> Mat:
# TODO: consistency?
img_size_base = hash_size * high_freq_factor
img_size = (img_size_base, img_size_base)
img_resized = _resize_image(img_gray, img_size)
img_resized = img_resized.astype(np.float32)
dct_mat = cv2.dct(img_resized)
hash_mat = dct_mat[:hash_size, :hash_size]
return hash_mat > hash_mat.mean()

View File

@ -0,0 +1,18 @@
from .builder import ImageHashesDatabaseBuilder
from .index import ImageHashesDatabase, ImageHashesDatabasePropertyMissingError
from .models import (
ImageHashBuildTask,
ImageHashHashType,
ImageHashResult,
ImageHashType,
)
__all__ = [
"ImageHashesDatabase",
"ImageHashesDatabasePropertyMissingError",
"ImageHashHashType",
"ImageHashResult",
"ImageHashType",
"ImageHashesDatabaseBuilder",
"ImageHashBuildTask",
]

View File

@ -0,0 +1,85 @@
import logging
from datetime import datetime, timezone
from sqlite3 import Connection
from typing import List
from arcaea_offline_ocr.core import hashers
from .index import ImageHashesDatabase
from .models import ImageHash, ImageHashBuildTask, ImageHashHashType
logger = logging.getLogger(__name__)
class ImageHashesDatabaseBuilder:
@staticmethod
def __insert_property(conn: Connection, key: str, value: str):
return conn.execute(
"INSERT INTO properties (key, value) VALUES (?, ?)",
(key, value),
)
@classmethod
def build(
cls,
conn: Connection,
tasks: List[ImageHashBuildTask],
*,
hash_size: int = 16,
high_freq_factor: int = 4,
):
rows: List[ImageHash] = []
for task in tasks:
try:
img_gray = task.imread_function(task.image_path)
for hash_type, hash_mat in [
(
ImageHashHashType.AVERAGE,
hashers.average(img_gray, hash_size),
),
(
ImageHashHashType.DCT,
hashers.dct(img_gray, hash_size, high_freq_factor),
),
(
ImageHashHashType.DIFFERENCE,
hashers.difference(img_gray, hash_size),
),
]:
rows.append(
ImageHash(
hash_type=hash_type,
type=task.type,
label=task.label,
hash=ImageHashesDatabase.hash_mat_to_bytes(hash_mat),
)
)
except Exception:
logger.exception("Error processing task %r", task)
conn.execute("CREATE TABLE properties (`key` VARCHAR, `value` VARCHAR)")
conn.execute(
"CREATE TABLE hashes (`hash_type` INTEGER, `type` INTEGER, `label` VARCHAR, `hash` BLOB)"
)
now = datetime.now(tz=timezone.utc)
timestamp = int(now.timestamp() * 1000)
cls.__insert_property(conn, ImageHashesDatabase.KEY_HASH_SIZE, str(hash_size))
cls.__insert_property(
conn, ImageHashesDatabase.KEY_HIGH_FREQ_FACTOR, str(high_freq_factor)
)
cls.__insert_property(
conn, ImageHashesDatabase.KEY_BUILT_TIMESTAMP, str(timestamp)
)
conn.executemany(
"INSERT INTO hashes (hash_type, type, label, hash) VALUES (?, ?, ?, ?)",
[
(row.hash_type.value, row.type.value, row.label, row.hash)
for row in rows
],
)
conn.commit()

View File

@ -0,0 +1,141 @@
import sqlite3
from datetime import datetime, timezone
from typing import Any, Callable, List, Optional, TypeVar
from arcaea_offline_ocr.core import hashers
from arcaea_offline_ocr.types import Mat
from .models import ImageHashHashType, ImageHashResult, ImageHashType
T = TypeVar("T")
def _sql_hamming_distance(hash1: bytes, hash2: bytes):
assert len(hash1) == len(hash2), "hash size does not match!"
count = sum(1 for byte1, byte2 in zip(hash1, hash2) if byte1 != byte2)
return count
class ImageHashesDatabasePropertyMissingError(Exception):
pass
class ImageHashesDatabase:
KEY_HASH_SIZE = "hash_size"
KEY_HIGH_FREQ_FACTOR = "high_freq_factor"
KEY_BUILT_TIMESTAMP = "built_timestamp"
def __init__(self, conn: sqlite3.Connection):
self.conn = conn
self.conn.create_function("HAMMING_DISTANCE", 2, _sql_hamming_distance)
self._hash_size: int = -1
self._high_freq_factor: int = -1
self._built_time: Optional[datetime] = None
self._hashes_count = {
ImageHashType.JACKET: 0,
ImageHashType.PARTNER_ICON: 0,
}
self._hash_length: int = -1
self._initialize()
@property
def hash_size(self):
return self._hash_size
@property
def high_freq_factor(self):
return self._high_freq_factor
@property
def hash_length(self):
return self._hash_length
def _initialize(self):
def query_property(key, convert_func: Callable[[Any], T]) -> Optional[T]:
result = self.conn.execute(
"SELECT value FROM properties WHERE key = ?",
(key,),
).fetchone()
return convert_func(result[0]) if result is not None else None
def set_hashes_count(type: ImageHashType):
self._hashes_count[type] = self.conn.execute(
"SELECT COUNT(DISTINCT label) FROM hashes WHERE type = ?", (type.value,)
).fetchone()[0]
hash_size = query_property(self.KEY_HASH_SIZE, lambda x: int(x))
if hash_size is None:
raise ImageHashesDatabasePropertyMissingError("hash_size")
self._hash_size = hash_size
high_freq_factor = query_property(self.KEY_HIGH_FREQ_FACTOR, lambda x: int(x))
if high_freq_factor is None:
raise ImageHashesDatabasePropertyMissingError("high_freq_factor")
self._high_freq_factor = high_freq_factor
self._built_time = query_property(
self.KEY_BUILT_TIMESTAMP,
lambda ts: datetime.fromtimestamp(int(ts) / 1000, tz=timezone.utc),
)
set_hashes_count(ImageHashType.JACKET)
set_hashes_count(ImageHashType.PARTNER_ICON)
self._hash_length = self._hash_size**2
def lookup_hash(
self, type: ImageHashType, hash_type: ImageHashHashType, hash: bytes
) -> List[ImageHashResult]:
cursor = self.conn.execute(
"SELECT"
" label,"
" HAMMING_DISTANCE(hash, ?) AS distance"
" FROM hashes"
" WHERE type = ? AND hash_type = ?"
" ORDER BY distance ASC LIMIT 10",
(hash, type.value, hash_type.value),
)
results = []
for label, distance in cursor.fetchall():
results.append(
ImageHashResult(
hash_type=hash_type,
type=type,
label=label,
confidence=(self.hash_length - distance) / self.hash_length,
)
)
return results
@staticmethod
def hash_mat_to_bytes(hash: Mat) -> bytes:
return bytes([255 if b else 0 for b in hash.flatten()])
def identify_image(self, type: ImageHashType, img) -> List[ImageHashResult]:
results = []
ahash = hashers.average(img, self.hash_size)
dhash = hashers.difference(img, self.hash_size)
phash = hashers.dct(img, self.hash_size, self.high_freq_factor)
results.extend(
self.lookup_hash(
type, ImageHashHashType.AVERAGE, self.hash_mat_to_bytes(ahash)
)
)
results.extend(
self.lookup_hash(
type, ImageHashHashType.DIFFERENCE, self.hash_mat_to_bytes(dhash)
)
)
results.extend(
self.lookup_hash(type, ImageHashHashType.DCT, self.hash_mat_to_bytes(phash))
)
return results

View File

@ -0,0 +1,46 @@
import dataclasses
from enum import IntEnum
from typing import Callable
import cv2
from arcaea_offline_ocr.types import Mat
class ImageHashHashType(IntEnum):
AVERAGE = 0
DIFFERENCE = 1
DCT = 2
class ImageHashType(IntEnum):
JACKET = 0
PARTNER_ICON = 1
@dataclasses.dataclass
class ImageHash:
hash_type: ImageHashHashType
type: ImageHashType
label: str
hash: bytes
@dataclasses.dataclass
class ImageHashResult:
hash_type: ImageHashHashType
type: ImageHashType
label: str
confidence: float
def _default_imread_gray(image_path: str):
return cv2.cvtColor(cv2.imread(image_path, cv2.IMREAD_COLOR), cv2.COLOR_BGR2GRAY)
@dataclasses.dataclass
class ImageHashBuildTask:
image_path: str
type: ImageHashType
label: str
imread_function: Callable[[str], Mat] = _default_imread_gray

View File

@ -67,8 +67,9 @@ class DeviceOcr:
roi = self.masker.score(self.extractor.score)
contours, _ = cv2.findContours(roi, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
for contour in contours:
x, y, w, h = cv2.boundingRect(contour)
if h < roi.shape[0] * 0.6:
if (
cv2.boundingRect(contour)[3] < roi.shape[0] * 0.6
): # h < score_component_h * 0.6
roi = cv2.fillPoly(roi, [contour], [0])
return ocr_digits_by_contour_knn(roi, self.knn_model)
@ -79,6 +80,7 @@ class DeviceOcr:
self.masker.rating_class_prs(roi),
self.masker.rating_class_ftr(roi),
self.masker.rating_class_byd(roi),
self.masker.rating_class_etr(roi),
]
return max(enumerate(results), key=lambda i: np.count_nonzero(i[1]))[0]
@ -108,7 +110,7 @@ class DeviceOcr:
@staticmethod
def preprocess_char_icon(img_gray: Mat):
h, w = img_gray.shape[:2]
img = cv2.copyMakeBorder(img_gray, w - h, 0, 0, 0, cv2.BORDER_REPLICATE)
img = cv2.copyMakeBorder(img_gray, max(w - h, 0), 0, 0, 0, cv2.BORDER_REPLICATE)
h, w = img.shape[:2]
img = cv2.fillPoly(
img,

View File

@ -6,6 +6,8 @@ from .common import DeviceRoisMasker
class DeviceRoisMaskerAuto(DeviceRoisMasker):
# pylint: disable=abstract-method
@staticmethod
def mask_bgr_in_hsv(roi_bgr: Mat, hsv_lower: Mat, hsv_upper: Mat):
return cv2.inRange(
@ -32,6 +34,9 @@ class DeviceRoisMaskerAutoT1(DeviceRoisMaskerAuto):
BYD_HSV_MIN = np.array([170, 50, 50], np.uint8)
BYD_HSV_MAX = np.array([179, 210, 198], np.uint8)
ETR_HSV_MIN = np.array([130, 60, 80], np.uint8)
ETR_HSV_MAX = np.array([140, 145, 180], np.uint8)
TRACK_LOST_HSV_MIN = np.array([170, 75, 90], np.uint8)
TRACK_LOST_HSV_MAX = np.array([175, 170, 160], np.uint8)
@ -85,6 +90,10 @@ class DeviceRoisMaskerAutoT1(DeviceRoisMaskerAuto):
def rating_class_byd(cls, roi_bgr: Mat) -> Mat:
return cls.mask_bgr_in_hsv(roi_bgr, cls.BYD_HSV_MIN, cls.BYD_HSV_MAX)
@classmethod
def rating_class_etr(cls, roi_bgr: Mat) -> Mat:
return cls.mask_bgr_in_hsv(roi_bgr, cls.ETR_HSV_MIN, cls.ETR_HSV_MAX)
@classmethod
def max_recall(cls, roi_bgr: Mat) -> Mat:
return cls.gray(roi_bgr)
@ -116,7 +125,7 @@ class DeviceRoisMaskerAutoT1(DeviceRoisMaskerAuto):
class DeviceRoisMaskerAutoT2(DeviceRoisMaskerAuto):
PFL_HSV_MIN = np.array([0, 0, 248], np.uint8)
PFL_HSV_MAX = np.array([179, 10, 255], np.uint8)
PFL_HSV_MAX = np.array([179, 40, 255], np.uint8)
SCORE_HSV_MIN = np.array([0, 0, 180], np.uint8)
SCORE_HSV_MAX = np.array([179, 255, 255], np.uint8)
@ -133,6 +142,9 @@ class DeviceRoisMaskerAutoT2(DeviceRoisMaskerAuto):
BYD_HSV_MIN = np.array([170, 50, 50], np.uint8)
BYD_HSV_MAX = np.array([179, 210, 198], np.uint8)
ETR_HSV_MIN = np.array([130, 60, 80], np.uint8)
ETR_HSV_MAX = np.array([140, 145, 180], np.uint8)
MAX_RECALL_HSV_MIN = np.array([125, 0, 0], np.uint8)
MAX_RECALL_HSV_MAX = np.array([145, 100, 150], np.uint8)
@ -184,6 +196,10 @@ class DeviceRoisMaskerAutoT2(DeviceRoisMaskerAuto):
def rating_class_byd(cls, roi_bgr: Mat) -> Mat:
return cls.mask_bgr_in_hsv(roi_bgr, cls.BYD_HSV_MIN, cls.BYD_HSV_MAX)
@classmethod
def rating_class_etr(cls, roi_bgr: Mat) -> Mat:
return cls.mask_bgr_in_hsv(roi_bgr, cls.ETR_HSV_MIN, cls.ETR_HSV_MAX)
@classmethod
def max_recall(cls, roi_bgr: Mat) -> Mat:
return cls.mask_bgr_in_hsv(

View File

@ -34,6 +34,10 @@ class DeviceRoisMasker:
def rating_class_byd(cls, roi_bgr: Mat) -> Mat:
raise NotImplementedError()
@classmethod
def rating_class_etr(cls, roi_bgr: Mat) -> Mat:
raise NotImplementedError()
@classmethod
def max_recall(cls, roi_bgr: Mat) -> Mat:
raise NotImplementedError()

View File

@ -36,7 +36,7 @@ class FixRects:
if rect in consumed_rects:
continue
x, y, w, h = rect
x, _, w, h = rect
# grab those small rects
if not img_height * 0.1 <= h <= img_height * 0.6:
continue
@ -46,7 +46,7 @@ class FixRects:
for other_rect in rects:
if rect == other_rect:
continue
ox, oy, ow, oh = other_rect
ox, _, ow, _ = other_rect
if abs(x - ox) < tolerance and abs((x + w) - (ox + ow)) < tolerance:
group.append(other_rect)

View File

@ -12,7 +12,8 @@ def phash_opencv(img_gray, hash_size=8, highfreq_factor=4):
"""
Perceptual Hash computation.
Implementation follows http://www.hackerfactor.com/blog/index.php?/archives/432-Looks-Like-It.html
Implementation follows
http://www.hackerfactor.com/blog/index.php?/archives/432-Looks-Like-It.html
Adapted from `imagehash.phash`, pure opencv implementation
@ -69,14 +70,14 @@ class ImagePhashDatabase:
self.partner_icon_ids: List[str] = []
self.partner_icon_hashes = []
for id, hash in zip(self.ids, self.hashes):
id_splitted = id.split("||")
for _id, _hash in zip(self.ids, self.hashes):
id_splitted = _id.split("||")
if len(id_splitted) > 1 and id_splitted[0] == "partner_icon":
self.partner_icon_ids.append(id_splitted[1])
self.partner_icon_hashes.append(hash)
self.partner_icon_hashes.append(_hash)
else:
self.jacket_ids.append(id)
self.jacket_hashes.append(hash)
self.jacket_ids.append(_id)
self.jacket_hashes.append(_hash)
def calculate_phash(self, img_gray: Mat):
return phash_opencv(

View File

@ -42,5 +42,5 @@ def apply_factor(item: T, factor: float) -> T:
def apply_factor(item, factor: float):
if isinstance(item, (int, float)):
return item * factor
elif isinstance(item, Iterable):
if isinstance(item, Iterable):
return item.__class__([i * factor for i in item])