mirror of
https://github.com/283375/arcaea-offline-ocr.git
synced 2025-07-01 20:36:27 +00:00
Compare commits
6 Commits
v0.0.98
...
619bff2ea4
Author | SHA1 | Date | |
---|---|---|---|
619bff2ea4
|
|||
413188d86a
|
|||
cfe8de043c
|
|||
3f6c08b2ad
|
|||
854d5558cf
|
|||
df77421a34
|
@ -4,11 +4,9 @@ repos:
|
||||
hooks:
|
||||
- id: end-of-file-fixer
|
||||
- id: trailing-whitespace
|
||||
- repo: https://github.com/psf/black
|
||||
rev: 23.1.0
|
||||
- repo: https://github.com/astral-sh/ruff-pre-commit
|
||||
rev: v0.9.0
|
||||
hooks:
|
||||
- id: black
|
||||
- repo: https://github.com/PyCQA/isort
|
||||
rev: 5.12.0
|
||||
hooks:
|
||||
- id: isort
|
||||
- id: ruff
|
||||
args: ["--fix"]
|
||||
- id: ruff-format
|
||||
|
@ -4,7 +4,7 @@ build-backend = "setuptools.build_meta"
|
||||
|
||||
[project]
|
||||
name = "arcaea-offline-ocr"
|
||||
version = "0.0.98"
|
||||
version = "0.0.99"
|
||||
authors = [{ name = "283375", email = "log_283375@163.com" }]
|
||||
description = "Extract your Arcaea play result from screenshot."
|
||||
readme = "README.md"
|
||||
|
0
src/arcaea_offline_ocr/core/__init__.py
Normal file
0
src/arcaea_offline_ocr/core/__init__.py
Normal file
3
src/arcaea_offline_ocr/core/hashers/__init__.py
Normal file
3
src/arcaea_offline_ocr/core/hashers/__init__.py
Normal file
@ -0,0 +1,3 @@
|
||||
from .index import average, dct, difference
|
||||
|
||||
__all__ = ["average", "dct", "difference"]
|
7
src/arcaea_offline_ocr/core/hashers/_common.py
Normal file
7
src/arcaea_offline_ocr/core/hashers/_common.py
Normal file
@ -0,0 +1,7 @@
|
||||
import cv2
|
||||
|
||||
from arcaea_offline_ocr.types import Mat
|
||||
|
||||
|
||||
def _resize_image(src: Mat, dsize: ...) -> Mat:
|
||||
return cv2.resize(src, dsize, fx=0, fy=0, interpolation=cv2.INTER_AREA)
|
35
src/arcaea_offline_ocr/core/hashers/index.py
Normal file
35
src/arcaea_offline_ocr/core/hashers/index.py
Normal file
@ -0,0 +1,35 @@
|
||||
import cv2
|
||||
import numpy as np
|
||||
|
||||
from arcaea_offline_ocr.types import Mat
|
||||
|
||||
from ._common import _resize_image
|
||||
|
||||
|
||||
def average(img_gray: Mat, hash_size: int) -> Mat:
|
||||
img_resized = _resize_image(img_gray, (hash_size, hash_size))
|
||||
diff = img_resized > img_resized.mean()
|
||||
return diff.flatten()
|
||||
|
||||
|
||||
def difference(img_gray: Mat, hash_size: int) -> Mat:
|
||||
img_size = (hash_size + 1, hash_size)
|
||||
img_resized = _resize_image(img_gray, img_size)
|
||||
|
||||
previous = img_resized[:, :-1]
|
||||
current = img_resized[:, 1:]
|
||||
diff = previous > current
|
||||
return diff.flatten()
|
||||
|
||||
|
||||
def dct(img_gray: Mat, hash_size: int = 16, high_freq_factor: int = 4) -> Mat:
|
||||
# TODO: consistency?
|
||||
img_size_base = hash_size * high_freq_factor
|
||||
img_size = (img_size_base, img_size_base)
|
||||
|
||||
img_resized = _resize_image(img_gray, img_size)
|
||||
img_resized = img_resized.astype(np.float32)
|
||||
dct_mat = cv2.dct(img_resized)
|
||||
|
||||
hash_mat = dct_mat[:hash_size, :hash_size]
|
||||
return hash_mat > hash_mat.mean()
|
18
src/arcaea_offline_ocr/dependencies/ihdb/__init__.py
Normal file
18
src/arcaea_offline_ocr/dependencies/ihdb/__init__.py
Normal file
@ -0,0 +1,18 @@
|
||||
from .builder import ImageHashesDatabaseBuilder
|
||||
from .index import ImageHashesDatabase, ImageHashesDatabasePropertyMissingError
|
||||
from .models import (
|
||||
ImageHashBuildTask,
|
||||
ImageHashHashType,
|
||||
ImageHashResult,
|
||||
ImageHashType,
|
||||
)
|
||||
|
||||
__all__ = [
|
||||
"ImageHashesDatabase",
|
||||
"ImageHashesDatabasePropertyMissingError",
|
||||
"ImageHashHashType",
|
||||
"ImageHashResult",
|
||||
"ImageHashType",
|
||||
"ImageHashesDatabaseBuilder",
|
||||
"ImageHashBuildTask",
|
||||
]
|
85
src/arcaea_offline_ocr/dependencies/ihdb/builder.py
Normal file
85
src/arcaea_offline_ocr/dependencies/ihdb/builder.py
Normal file
@ -0,0 +1,85 @@
|
||||
import logging
|
||||
from datetime import datetime, timezone
|
||||
from sqlite3 import Connection
|
||||
from typing import List
|
||||
|
||||
from arcaea_offline_ocr.core import hashers
|
||||
|
||||
from .index import ImageHashesDatabase
|
||||
from .models import ImageHash, ImageHashBuildTask, ImageHashHashType
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class ImageHashesDatabaseBuilder:
|
||||
@staticmethod
|
||||
def __insert_property(conn: Connection, key: str, value: str):
|
||||
return conn.execute(
|
||||
"INSERT INTO properties (key, value) VALUES (?, ?)",
|
||||
(key, value),
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def build(
|
||||
cls,
|
||||
conn: Connection,
|
||||
tasks: List[ImageHashBuildTask],
|
||||
*,
|
||||
hash_size: int = 16,
|
||||
high_freq_factor: int = 4,
|
||||
):
|
||||
rows: List[ImageHash] = []
|
||||
|
||||
for task in tasks:
|
||||
try:
|
||||
img_gray = task.imread_function(task.image_path)
|
||||
|
||||
for hash_type, hash_mat in [
|
||||
(
|
||||
ImageHashHashType.AVERAGE,
|
||||
hashers.average(img_gray, hash_size),
|
||||
),
|
||||
(
|
||||
ImageHashHashType.DCT,
|
||||
hashers.dct(img_gray, hash_size, high_freq_factor),
|
||||
),
|
||||
(
|
||||
ImageHashHashType.DIFFERENCE,
|
||||
hashers.difference(img_gray, hash_size),
|
||||
),
|
||||
]:
|
||||
rows.append(
|
||||
ImageHash(
|
||||
hash_type=hash_type,
|
||||
type=task.type,
|
||||
label=task.label,
|
||||
hash=ImageHashesDatabase.hash_mat_to_bytes(hash_mat),
|
||||
)
|
||||
)
|
||||
except Exception:
|
||||
logger.exception("Error processing task %r", task)
|
||||
|
||||
conn.execute("CREATE TABLE properties (`key` VARCHAR, `value` VARCHAR)")
|
||||
conn.execute(
|
||||
"CREATE TABLE hashes (`hash_type` INTEGER, `type` INTEGER, `label` VARCHAR, `hash` BLOB)"
|
||||
)
|
||||
|
||||
now = datetime.now(tz=timezone.utc)
|
||||
timestamp = int(now.timestamp() * 1000)
|
||||
|
||||
cls.__insert_property(conn, ImageHashesDatabase.KEY_HASH_SIZE, str(hash_size))
|
||||
cls.__insert_property(
|
||||
conn, ImageHashesDatabase.KEY_HIGH_FREQ_FACTOR, str(high_freq_factor)
|
||||
)
|
||||
cls.__insert_property(
|
||||
conn, ImageHashesDatabase.KEY_BUILT_TIMESTAMP, str(timestamp)
|
||||
)
|
||||
|
||||
conn.executemany(
|
||||
"INSERT INTO hashes (hash_type, type, label, hash) VALUES (?, ?, ?, ?)",
|
||||
[
|
||||
(row.hash_type.value, row.type.value, row.label, row.hash)
|
||||
for row in rows
|
||||
],
|
||||
)
|
||||
conn.commit()
|
141
src/arcaea_offline_ocr/dependencies/ihdb/index.py
Normal file
141
src/arcaea_offline_ocr/dependencies/ihdb/index.py
Normal file
@ -0,0 +1,141 @@
|
||||
import sqlite3
|
||||
from datetime import datetime, timezone
|
||||
from typing import Any, Callable, List, Optional, TypeVar
|
||||
|
||||
from arcaea_offline_ocr.core import hashers
|
||||
from arcaea_offline_ocr.types import Mat
|
||||
|
||||
from .models import ImageHashHashType, ImageHashResult, ImageHashType
|
||||
|
||||
T = TypeVar("T")
|
||||
|
||||
|
||||
def _sql_hamming_distance(hash1: bytes, hash2: bytes):
|
||||
assert len(hash1) == len(hash2), "hash size does not match!"
|
||||
count = sum(1 for byte1, byte2 in zip(hash1, hash2) if byte1 != byte2)
|
||||
return count
|
||||
|
||||
|
||||
class ImageHashesDatabasePropertyMissingError(Exception):
|
||||
pass
|
||||
|
||||
|
||||
class ImageHashesDatabase:
|
||||
KEY_HASH_SIZE = "hash_size"
|
||||
KEY_HIGH_FREQ_FACTOR = "high_freq_factor"
|
||||
KEY_BUILT_TIMESTAMP = "built_timestamp"
|
||||
|
||||
def __init__(self, conn: sqlite3.Connection):
|
||||
self.conn = conn
|
||||
self.conn.create_function("HAMMING_DISTANCE", 2, _sql_hamming_distance)
|
||||
|
||||
self._hash_size: int = -1
|
||||
self._high_freq_factor: int = -1
|
||||
self._built_time: Optional[datetime] = None
|
||||
|
||||
self._hashes_count = {
|
||||
ImageHashType.JACKET: 0,
|
||||
ImageHashType.PARTNER_ICON: 0,
|
||||
}
|
||||
|
||||
self._hash_length: int = -1
|
||||
|
||||
self._initialize()
|
||||
|
||||
@property
|
||||
def hash_size(self):
|
||||
return self._hash_size
|
||||
|
||||
@property
|
||||
def high_freq_factor(self):
|
||||
return self._high_freq_factor
|
||||
|
||||
@property
|
||||
def hash_length(self):
|
||||
return self._hash_length
|
||||
|
||||
def _initialize(self):
|
||||
def query_property(key, convert_func: Callable[[Any], T]) -> Optional[T]:
|
||||
result = self.conn.execute(
|
||||
"SELECT value FROM properties WHERE key = ?",
|
||||
(key,),
|
||||
).fetchone()
|
||||
return convert_func(result[0]) if result is not None else None
|
||||
|
||||
def set_hashes_count(type: ImageHashType):
|
||||
self._hashes_count[type] = self.conn.execute(
|
||||
"SELECT COUNT(DISTINCT label) FROM hashes WHERE type = ?", (type.value,)
|
||||
).fetchone()[0]
|
||||
|
||||
hash_size = query_property(self.KEY_HASH_SIZE, lambda x: int(x))
|
||||
if hash_size is None:
|
||||
raise ImageHashesDatabasePropertyMissingError("hash_size")
|
||||
self._hash_size = hash_size
|
||||
|
||||
high_freq_factor = query_property(self.KEY_HIGH_FREQ_FACTOR, lambda x: int(x))
|
||||
if high_freq_factor is None:
|
||||
raise ImageHashesDatabasePropertyMissingError("high_freq_factor")
|
||||
self._high_freq_factor = high_freq_factor
|
||||
|
||||
self._built_time = query_property(
|
||||
self.KEY_BUILT_TIMESTAMP,
|
||||
lambda ts: datetime.fromtimestamp(int(ts) / 1000, tz=timezone.utc),
|
||||
)
|
||||
|
||||
set_hashes_count(ImageHashType.JACKET)
|
||||
set_hashes_count(ImageHashType.PARTNER_ICON)
|
||||
|
||||
self._hash_length = self._hash_size**2
|
||||
|
||||
def lookup_hash(
|
||||
self, type: ImageHashType, hash_type: ImageHashHashType, hash: bytes
|
||||
) -> List[ImageHashResult]:
|
||||
cursor = self.conn.execute(
|
||||
"SELECT"
|
||||
" label,"
|
||||
" HAMMING_DISTANCE(hash, ?) AS distance"
|
||||
" FROM hashes"
|
||||
" WHERE type = ? AND hash_type = ?"
|
||||
" ORDER BY distance ASC LIMIT 10",
|
||||
(hash, type.value, hash_type.value),
|
||||
)
|
||||
|
||||
results = []
|
||||
for label, distance in cursor.fetchall():
|
||||
results.append(
|
||||
ImageHashResult(
|
||||
hash_type=hash_type,
|
||||
type=type,
|
||||
label=label,
|
||||
confidence=(self.hash_length - distance) / self.hash_length,
|
||||
)
|
||||
)
|
||||
|
||||
return results
|
||||
|
||||
@staticmethod
|
||||
def hash_mat_to_bytes(hash: Mat) -> bytes:
|
||||
return bytes([255 if b else 0 for b in hash.flatten()])
|
||||
|
||||
def identify_image(self, type: ImageHashType, img) -> List[ImageHashResult]:
|
||||
results = []
|
||||
|
||||
ahash = hashers.average(img, self.hash_size)
|
||||
dhash = hashers.difference(img, self.hash_size)
|
||||
phash = hashers.dct(img, self.hash_size, self.high_freq_factor)
|
||||
|
||||
results.extend(
|
||||
self.lookup_hash(
|
||||
type, ImageHashHashType.AVERAGE, self.hash_mat_to_bytes(ahash)
|
||||
)
|
||||
)
|
||||
results.extend(
|
||||
self.lookup_hash(
|
||||
type, ImageHashHashType.DIFFERENCE, self.hash_mat_to_bytes(dhash)
|
||||
)
|
||||
)
|
||||
results.extend(
|
||||
self.lookup_hash(type, ImageHashHashType.DCT, self.hash_mat_to_bytes(phash))
|
||||
)
|
||||
|
||||
return results
|
46
src/arcaea_offline_ocr/dependencies/ihdb/models.py
Normal file
46
src/arcaea_offline_ocr/dependencies/ihdb/models.py
Normal file
@ -0,0 +1,46 @@
|
||||
import dataclasses
|
||||
from enum import IntEnum
|
||||
from typing import Callable
|
||||
|
||||
import cv2
|
||||
|
||||
from arcaea_offline_ocr.types import Mat
|
||||
|
||||
|
||||
class ImageHashHashType(IntEnum):
|
||||
AVERAGE = 0
|
||||
DIFFERENCE = 1
|
||||
DCT = 2
|
||||
|
||||
|
||||
class ImageHashType(IntEnum):
|
||||
JACKET = 0
|
||||
PARTNER_ICON = 1
|
||||
|
||||
|
||||
@dataclasses.dataclass
|
||||
class ImageHash:
|
||||
hash_type: ImageHashHashType
|
||||
type: ImageHashType
|
||||
label: str
|
||||
hash: bytes
|
||||
|
||||
|
||||
@dataclasses.dataclass
|
||||
class ImageHashResult:
|
||||
hash_type: ImageHashHashType
|
||||
type: ImageHashType
|
||||
label: str
|
||||
confidence: float
|
||||
|
||||
|
||||
def _default_imread_gray(image_path: str):
|
||||
return cv2.cvtColor(cv2.imread(image_path, cv2.IMREAD_COLOR), cv2.COLOR_BGR2GRAY)
|
||||
|
||||
|
||||
@dataclasses.dataclass
|
||||
class ImageHashBuildTask:
|
||||
image_path: str
|
||||
type: ImageHashType
|
||||
label: str
|
||||
imread_function: Callable[[str], Mat] = _default_imread_gray
|
@ -110,7 +110,7 @@ class DeviceOcr:
|
||||
@staticmethod
|
||||
def preprocess_char_icon(img_gray: Mat):
|
||||
h, w = img_gray.shape[:2]
|
||||
img = cv2.copyMakeBorder(img_gray, w - h, 0, 0, 0, cv2.BORDER_REPLICATE)
|
||||
img = cv2.copyMakeBorder(img_gray, max(w - h, 0), 0, 0, 0, cv2.BORDER_REPLICATE)
|
||||
h, w = img.shape[:2]
|
||||
img = cv2.fillPoly(
|
||||
img,
|
||||
|
@ -125,7 +125,7 @@ class DeviceRoisMaskerAutoT1(DeviceRoisMaskerAuto):
|
||||
|
||||
class DeviceRoisMaskerAutoT2(DeviceRoisMaskerAuto):
|
||||
PFL_HSV_MIN = np.array([0, 0, 248], np.uint8)
|
||||
PFL_HSV_MAX = np.array([179, 10, 255], np.uint8)
|
||||
PFL_HSV_MAX = np.array([179, 40, 255], np.uint8)
|
||||
|
||||
SCORE_HSV_MIN = np.array([0, 0, 180], np.uint8)
|
||||
SCORE_HSV_MAX = np.array([179, 255, 255], np.uint8)
|
||||
|
Reference in New Issue
Block a user