import cv2 import numpy as np from ....types import Mat from .common import DeviceRoisMasker class DeviceRoisMaskerAuto(DeviceRoisMasker): # pylint: disable=abstract-method @staticmethod def mask_bgr_in_hsv(roi_bgr: Mat, hsv_lower: Mat, hsv_upper: Mat): return cv2.inRange( cv2.cvtColor(roi_bgr, cv2.COLOR_BGR2HSV), hsv_lower, hsv_upper ) class DeviceRoisMaskerAutoT1(DeviceRoisMaskerAuto): GRAY_BGR_MIN = np.array([50] * 3, np.uint8) GRAY_BGR_MAX = np.array([160] * 3, np.uint8) SCORE_HSV_MIN = np.array([0, 0, 180], np.uint8) SCORE_HSV_MAX = np.array([179, 255, 255], np.uint8) PST_HSV_MIN = np.array([100, 50, 80], np.uint8) PST_HSV_MAX = np.array([100, 255, 255], np.uint8) PRS_HSV_MIN = np.array([43, 40, 75], np.uint8) PRS_HSV_MAX = np.array([50, 155, 190], np.uint8) FTR_HSV_MIN = np.array([149, 30, 0], np.uint8) FTR_HSV_MAX = np.array([155, 181, 150], np.uint8) BYD_HSV_MIN = np.array([170, 50, 50], np.uint8) BYD_HSV_MAX = np.array([179, 210, 198], np.uint8) TRACK_LOST_HSV_MIN = np.array([170, 75, 90], np.uint8) TRACK_LOST_HSV_MAX = np.array([175, 170, 160], np.uint8) TRACK_COMPLETE_HSV_MIN = np.array([140, 0, 50], np.uint8) TRACK_COMPLETE_HSV_MAX = np.array([145, 50, 130], np.uint8) FULL_RECALL_HSV_MIN = np.array([140, 60, 80], np.uint8) FULL_RECALL_HSV_MAX = np.array([150, 130, 145], np.uint8) PURE_MEMORY_HSV_MIN = np.array([90, 70, 80], np.uint8) PURE_MEMORY_HSV_MAX = np.array([110, 200, 175], np.uint8) @classmethod def gray(cls, roi_bgr: Mat) -> Mat: bgr_value_equal_mask = np.max(roi_bgr, axis=2) - np.min(roi_bgr, axis=2) <= 5 img_bgr = roi_bgr.copy() img_bgr[~bgr_value_equal_mask] = np.array([0, 0, 0], roi_bgr.dtype) img_bgr = cv2.erode(img_bgr, cv2.getStructuringElement(cv2.MORPH_RECT, (2, 2))) img_bgr = cv2.dilate(img_bgr, cv2.getStructuringElement(cv2.MORPH_RECT, (1, 1))) return cv2.inRange(img_bgr, cls.GRAY_BGR_MIN, cls.GRAY_BGR_MAX) @classmethod def pure(cls, roi_bgr: Mat) -> Mat: return cls.gray(roi_bgr) @classmethod def far(cls, roi_bgr: Mat) -> Mat: return cls.gray(roi_bgr) @classmethod def lost(cls, roi_bgr: Mat) -> Mat: return cls.gray(roi_bgr) @classmethod def score(cls, roi_bgr: Mat) -> Mat: return cls.mask_bgr_in_hsv(roi_bgr, cls.SCORE_HSV_MIN, cls.SCORE_HSV_MAX) @classmethod def rating_class_pst(cls, roi_bgr: Mat) -> Mat: return cls.mask_bgr_in_hsv(roi_bgr, cls.PST_HSV_MIN, cls.PST_HSV_MAX) @classmethod def rating_class_prs(cls, roi_bgr: Mat) -> Mat: return cls.mask_bgr_in_hsv(roi_bgr, cls.PRS_HSV_MIN, cls.PRS_HSV_MAX) @classmethod def rating_class_ftr(cls, roi_bgr: Mat) -> Mat: return cls.mask_bgr_in_hsv(roi_bgr, cls.FTR_HSV_MIN, cls.FTR_HSV_MAX) @classmethod def rating_class_byd(cls, roi_bgr: Mat) -> Mat: return cls.mask_bgr_in_hsv(roi_bgr, cls.BYD_HSV_MIN, cls.BYD_HSV_MAX) @classmethod def max_recall(cls, roi_bgr: Mat) -> Mat: return cls.gray(roi_bgr) @classmethod def clear_status_track_lost(cls, roi_bgr: Mat) -> Mat: return cls.mask_bgr_in_hsv( roi_bgr, cls.TRACK_LOST_HSV_MIN, cls.TRACK_LOST_HSV_MAX ) @classmethod def clear_status_track_complete(cls, roi_bgr: Mat) -> Mat: return cls.mask_bgr_in_hsv( roi_bgr, cls.TRACK_COMPLETE_HSV_MIN, cls.TRACK_COMPLETE_HSV_MAX ) @classmethod def clear_status_full_recall(cls, roi_bgr: Mat) -> Mat: return cls.mask_bgr_in_hsv( roi_bgr, cls.FULL_RECALL_HSV_MIN, cls.FULL_RECALL_HSV_MAX ) @classmethod def clear_status_pure_memory(cls, roi_bgr: Mat) -> Mat: return cls.mask_bgr_in_hsv( roi_bgr, cls.PURE_MEMORY_HSV_MIN, cls.PURE_MEMORY_HSV_MAX ) class DeviceRoisMaskerAutoT2(DeviceRoisMaskerAuto): PFL_HSV_MIN = np.array([0, 0, 248], np.uint8) PFL_HSV_MAX = np.array([179, 10, 255], np.uint8) SCORE_HSV_MIN = np.array([0, 0, 180], np.uint8) SCORE_HSV_MAX = np.array([179, 255, 255], np.uint8) PST_HSV_MIN = np.array([100, 50, 80], np.uint8) PST_HSV_MAX = np.array([100, 255, 255], np.uint8) PRS_HSV_MIN = np.array([43, 40, 75], np.uint8) PRS_HSV_MAX = np.array([50, 155, 190], np.uint8) FTR_HSV_MIN = np.array([149, 30, 0], np.uint8) FTR_HSV_MAX = np.array([155, 181, 150], np.uint8) BYD_HSV_MIN = np.array([170, 50, 50], np.uint8) BYD_HSV_MAX = np.array([179, 210, 198], np.uint8) MAX_RECALL_HSV_MIN = np.array([125, 0, 0], np.uint8) MAX_RECALL_HSV_MAX = np.array([145, 100, 150], np.uint8) TRACK_LOST_HSV_MIN = np.array([170, 75, 90], np.uint8) TRACK_LOST_HSV_MAX = np.array([175, 170, 160], np.uint8) TRACK_COMPLETE_HSV_MIN = np.array([140, 0, 50], np.uint8) TRACK_COMPLETE_HSV_MAX = np.array([145, 50, 130], np.uint8) FULL_RECALL_HSV_MIN = np.array([140, 60, 80], np.uint8) FULL_RECALL_HSV_MAX = np.array([150, 130, 145], np.uint8) PURE_MEMORY_HSV_MIN = np.array([90, 70, 80], np.uint8) PURE_MEMORY_HSV_MAX = np.array([110, 200, 175], np.uint8) @classmethod def pfl(cls, roi_bgr: Mat) -> Mat: return cls.mask_bgr_in_hsv(roi_bgr, cls.PFL_HSV_MIN, cls.PFL_HSV_MAX) @classmethod def pure(cls, roi_bgr: Mat) -> Mat: return cls.pfl(roi_bgr) @classmethod def far(cls, roi_bgr: Mat) -> Mat: return cls.pfl(roi_bgr) @classmethod def lost(cls, roi_bgr: Mat) -> Mat: return cls.pfl(roi_bgr) @classmethod def score(cls, roi_bgr: Mat) -> Mat: return cls.mask_bgr_in_hsv(roi_bgr, cls.SCORE_HSV_MIN, cls.SCORE_HSV_MAX) @classmethod def rating_class_pst(cls, roi_bgr: Mat) -> Mat: return cls.mask_bgr_in_hsv(roi_bgr, cls.PST_HSV_MIN, cls.PST_HSV_MAX) @classmethod def rating_class_prs(cls, roi_bgr: Mat) -> Mat: return cls.mask_bgr_in_hsv(roi_bgr, cls.PRS_HSV_MIN, cls.PRS_HSV_MAX) @classmethod def rating_class_ftr(cls, roi_bgr: Mat) -> Mat: return cls.mask_bgr_in_hsv(roi_bgr, cls.FTR_HSV_MIN, cls.FTR_HSV_MAX) @classmethod def rating_class_byd(cls, roi_bgr: Mat) -> Mat: return cls.mask_bgr_in_hsv(roi_bgr, cls.BYD_HSV_MIN, cls.BYD_HSV_MAX) @classmethod def max_recall(cls, roi_bgr: Mat) -> Mat: return cls.mask_bgr_in_hsv( roi_bgr, cls.MAX_RECALL_HSV_MIN, cls.MAX_RECALL_HSV_MAX ) @classmethod def clear_status_track_lost(cls, roi_bgr: Mat) -> Mat: return cls.mask_bgr_in_hsv( roi_bgr, cls.TRACK_LOST_HSV_MIN, cls.TRACK_LOST_HSV_MAX ) @classmethod def clear_status_track_complete(cls, roi_bgr: Mat) -> Mat: return cls.mask_bgr_in_hsv( roi_bgr, cls.TRACK_COMPLETE_HSV_MIN, cls.TRACK_COMPLETE_HSV_MAX ) @classmethod def clear_status_full_recall(cls, roi_bgr: Mat) -> Mat: return cls.mask_bgr_in_hsv( roi_bgr, cls.FULL_RECALL_HSV_MIN, cls.FULL_RECALL_HSV_MAX ) @classmethod def clear_status_pure_memory(cls, roi_bgr: Mat) -> Mat: return cls.mask_bgr_in_hsv( roi_bgr, cls.PURE_MEMORY_HSV_MIN, cls.PURE_MEMORY_HSV_MAX )