Files
arcaea-offline-ocr/src/arcaea_offline_ocr/providers/knn.py

241 lines
7.5 KiB
Python

import logging
import math
from typing import TYPE_CHECKING, Callable, Optional, Sequence, Tuple
import cv2
import numpy as np
from ..crop import crop_xywh
from .base import OcrTextProvider
if TYPE_CHECKING:
from cv2.ml import KNearest
from ..types import Mat
logger = logging.getLogger(__name__)
class FixRects:
@staticmethod
def connect_broken(
rects: Sequence[Tuple[int, int, int, int]],
img_width: int,
img_height: int,
tolerance: Optional[int] = None,
):
# for a "broken" digit, please refer to
# /assets/fix_rects/broken_masked.jpg
# the larger "5" in the image is a "broken" digit
if tolerance is None:
tolerance = math.ceil(img_width * 0.08)
new_rects = []
consumed_rects = []
for rect in rects:
if rect in consumed_rects:
continue
x, _, w, h = rect
# grab those small rects
if not img_height * 0.1 <= h <= img_height * 0.6:
continue
group = []
# see if there's other rects that have near left & right borders
for other_rect in rects:
if rect == other_rect:
continue
ox, _, ow, _ = other_rect
if abs(x - ox) < tolerance and abs((x + w) - (ox + ow)) < tolerance:
group.append(other_rect)
if group:
group.append(rect)
consumed_rects.extend(group)
# calculate the new rect
new_x = min(r[0] for r in group)
new_y = min(r[1] for r in group)
new_right = max(r[0] + r[2] for r in group)
new_bottom = max(r[1] + r[3] for r in group)
new_w = new_right - new_x
new_h = new_bottom - new_y
new_rects.append((new_x, new_y, new_w, new_h))
return_rects = [r for r in rects if r not in consumed_rects]
return_rects.extend(new_rects)
return return_rects
@staticmethod
def split_connected(
img_masked: "Mat",
rects: Sequence[Tuple[int, int, int, int]],
rect_wh_ratio: float = 1.05,
width_range_ratio: float = 0.1,
):
connected_rects = []
new_rects = []
for rect in rects:
rx, ry, rw, rh = rect
if rw / rh <= rect_wh_ratio:
continue
connected_rects.append(rect)
# find the thinnest part
border_ignore = round(rw * width_range_ratio)
img_cropped = crop_xywh(
img_masked,
(border_ignore, ry, rw - border_ignore, rh),
)
white_pixels = {} # dict[x, white_pixel_number]
for i in range(img_cropped.shape[1]):
col = img_cropped[:, i]
white_pixels[rx + border_ignore + i] = np.count_nonzero(col > 200)
if all(v == 0 for v in white_pixels.values()):
return rects
least_white_pixels = min(v for v in white_pixels.values() if v > 0)
x_values = [
x for x, pixel in white_pixels.items() if pixel == least_white_pixels
]
# select only middle values
x_mean = np.mean(x_values)
x_std = np.std(x_values)
x_values = [
x for x in x_values if x_mean - x_std * 1.5 <= x <= x_mean + x_std * 1.5
]
x_mid = round(np.median(x_values))
# split the rect
new_rects.extend(
[(rx, ry, x_mid - rx, rh), (x_mid, ry, rx + rw - x_mid, rh)]
)
return_rects = [r for r in rects if r not in connected_rects]
return_rects.extend(new_rects)
return return_rects
def resize_fill_square(img: "Mat", target: int = 20):
h, w = img.shape[:2]
if h > w:
new_h = target
new_w = round(w * (target / h))
else:
new_w = target
new_h = round(h * (target / w))
resized = cv2.resize(img, (new_w, new_h))
border_size = math.ceil((max(new_w, new_h) - min(new_w, new_h)) / 2)
if new_w < new_h:
resized = cv2.copyMakeBorder(
resized, 0, 0, border_size, border_size, cv2.BORDER_CONSTANT
)
else:
resized = cv2.copyMakeBorder(
resized, border_size, border_size, 0, 0, cv2.BORDER_CONSTANT
)
return cv2.resize(resized, (target, target))
def preprocess_hog(digit_rois):
# https://learnopencv.com/handwritten-digits-classification-an-opencv-c-python-tutorial/
samples = []
for digit in digit_rois:
hog = cv2.HOGDescriptor((20, 20), (10, 10), (5, 5), (10, 10), 9)
hist = hog.compute(digit)
samples.append(hist)
return np.float32(samples)
def ocr_digit_samples_knn(__samples, knn_model: cv2.ml.KNearest, k: int = 4):
_, results, _, _ = knn_model.findNearest(__samples, k)
return [int(r) for r in results.ravel()]
class OcrKNearestTextProvider(OcrTextProvider):
_ContourFilter = Callable[["Mat"], bool]
_RectsFilter = Callable[[Sequence[int]], bool]
def __init__(self, model: "KNearest"):
self.model = model
def contours(
self, img: "Mat", /, *, contours_filter: Optional[_ContourFilter] = None
):
cnts, _ = cv2.findContours(img, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
if contours_filter:
cnts = list(filter(contours_filter, cnts))
return cnts
def result_raw(
self,
img: "Mat",
/,
*,
fix_rects: bool = True,
contours_filter: Optional[_ContourFilter] = None,
rects_filter: Optional[_RectsFilter] = None,
):
"""
:param img: grayscaled roi
"""
try:
cnts, _ = cv2.findContours(img, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
if contours_filter:
cnts = list(filter(contours_filter, cnts))
rects = [cv2.boundingRect(cnt) for cnt in cnts]
if fix_rects and rects_filter:
rects = FixRects.connect_broken(rects, img.shape[1], img.shape[0]) # type: ignore
rects = list(filter(rects_filter, rects))
rects = FixRects.split_connected(img, rects)
elif fix_rects:
rects = FixRects.connect_broken(rects, img.shape[1], img.shape[0]) # type: ignore
rects = FixRects.split_connected(img, rects)
elif rects_filter:
rects = list(filter(rects_filter, rects))
rects = sorted(rects, key=lambda r: r[0])
digits = []
for rect in rects:
digit = crop_xywh(img, rect)
digit = resize_fill_square(digit, 20)
digits.append(digit)
samples = preprocess_hog(digits)
return ocr_digit_samples_knn(samples, self.model)
except Exception:
logger.exception("Error occurred during KNearest OCR")
return None
def result(
self,
img: "Mat",
/,
*,
fix_rects: bool = True,
contours_filter: Optional[_ContourFilter] = None,
rects_filter: Optional[_RectsFilter] = None,
):
"""
:param img: grayscaled roi
"""
raw = self.result_raw(
img,
fix_rects=fix_rects,
contours_filter=contours_filter,
rects_filter=rects_filter,
)
return (
"".join(["".join(str(r) for r in raw if r > -1)])
if raw is not None
else None
)