mirror of
https://github.com/283375/arcaea-offline-ocr.git
synced 2025-07-01 12:26:27 +00:00
241 lines
7.5 KiB
Python
241 lines
7.5 KiB
Python
import logging
|
|
import math
|
|
from typing import TYPE_CHECKING, Callable, Optional, Sequence, Tuple
|
|
|
|
import cv2
|
|
import numpy as np
|
|
|
|
from ..crop import crop_xywh
|
|
from .base import OcrTextProvider
|
|
|
|
if TYPE_CHECKING:
|
|
from cv2.ml import KNearest
|
|
|
|
from ..types import Mat
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
class FixRects:
|
|
@staticmethod
|
|
def connect_broken(
|
|
rects: Sequence[Tuple[int, int, int, int]],
|
|
img_width: int,
|
|
img_height: int,
|
|
tolerance: Optional[int] = None,
|
|
):
|
|
# for a "broken" digit, please refer to
|
|
# /assets/fix_rects/broken_masked.jpg
|
|
# the larger "5" in the image is a "broken" digit
|
|
|
|
if tolerance is None:
|
|
tolerance = math.ceil(img_width * 0.08)
|
|
|
|
new_rects = []
|
|
consumed_rects = []
|
|
for rect in rects:
|
|
if rect in consumed_rects:
|
|
continue
|
|
|
|
x, _, w, h = rect
|
|
# grab those small rects
|
|
if not img_height * 0.1 <= h <= img_height * 0.6:
|
|
continue
|
|
|
|
group = []
|
|
# see if there's other rects that have near left & right borders
|
|
for other_rect in rects:
|
|
if rect == other_rect:
|
|
continue
|
|
ox, _, ow, _ = other_rect
|
|
if abs(x - ox) < tolerance and abs((x + w) - (ox + ow)) < tolerance:
|
|
group.append(other_rect)
|
|
|
|
if group:
|
|
group.append(rect)
|
|
consumed_rects.extend(group)
|
|
# calculate the new rect
|
|
new_x = min(r[0] for r in group)
|
|
new_y = min(r[1] for r in group)
|
|
new_right = max(r[0] + r[2] for r in group)
|
|
new_bottom = max(r[1] + r[3] for r in group)
|
|
new_w = new_right - new_x
|
|
new_h = new_bottom - new_y
|
|
new_rects.append((new_x, new_y, new_w, new_h))
|
|
|
|
return_rects = [r for r in rects if r not in consumed_rects]
|
|
return_rects.extend(new_rects)
|
|
return return_rects
|
|
|
|
@staticmethod
|
|
def split_connected(
|
|
img_masked: "Mat",
|
|
rects: Sequence[Tuple[int, int, int, int]],
|
|
rect_wh_ratio: float = 1.05,
|
|
width_range_ratio: float = 0.1,
|
|
):
|
|
connected_rects = []
|
|
new_rects = []
|
|
for rect in rects:
|
|
rx, ry, rw, rh = rect
|
|
if rw / rh <= rect_wh_ratio:
|
|
continue
|
|
|
|
connected_rects.append(rect)
|
|
|
|
# find the thinnest part
|
|
border_ignore = round(rw * width_range_ratio)
|
|
img_cropped = crop_xywh(
|
|
img_masked,
|
|
(border_ignore, ry, rw - border_ignore, rh),
|
|
)
|
|
white_pixels = {} # dict[x, white_pixel_number]
|
|
for i in range(img_cropped.shape[1]):
|
|
col = img_cropped[:, i]
|
|
white_pixels[rx + border_ignore + i] = np.count_nonzero(col > 200)
|
|
|
|
if all(v == 0 for v in white_pixels.values()):
|
|
return rects
|
|
|
|
least_white_pixels = min(v for v in white_pixels.values() if v > 0)
|
|
x_values = [
|
|
x for x, pixel in white_pixels.items() if pixel == least_white_pixels
|
|
]
|
|
# select only middle values
|
|
x_mean = np.mean(x_values)
|
|
x_std = np.std(x_values)
|
|
x_values = [
|
|
x for x in x_values if x_mean - x_std * 1.5 <= x <= x_mean + x_std * 1.5
|
|
]
|
|
x_mid = round(np.median(x_values))
|
|
|
|
# split the rect
|
|
new_rects.extend(
|
|
[(rx, ry, x_mid - rx, rh), (x_mid, ry, rx + rw - x_mid, rh)]
|
|
)
|
|
|
|
return_rects = [r for r in rects if r not in connected_rects]
|
|
return_rects.extend(new_rects)
|
|
return return_rects
|
|
|
|
|
|
def resize_fill_square(img: "Mat", target: int = 20):
|
|
h, w = img.shape[:2]
|
|
if h > w:
|
|
new_h = target
|
|
new_w = round(w * (target / h))
|
|
else:
|
|
new_w = target
|
|
new_h = round(h * (target / w))
|
|
resized = cv2.resize(img, (new_w, new_h))
|
|
|
|
border_size = math.ceil((max(new_w, new_h) - min(new_w, new_h)) / 2)
|
|
if new_w < new_h:
|
|
resized = cv2.copyMakeBorder(
|
|
resized, 0, 0, border_size, border_size, cv2.BORDER_CONSTANT
|
|
)
|
|
else:
|
|
resized = cv2.copyMakeBorder(
|
|
resized, border_size, border_size, 0, 0, cv2.BORDER_CONSTANT
|
|
)
|
|
return cv2.resize(resized, (target, target))
|
|
|
|
|
|
def preprocess_hog(digit_rois):
|
|
# https://learnopencv.com/handwritten-digits-classification-an-opencv-c-python-tutorial/
|
|
samples = []
|
|
for digit in digit_rois:
|
|
hog = cv2.HOGDescriptor((20, 20), (10, 10), (5, 5), (10, 10), 9)
|
|
hist = hog.compute(digit)
|
|
samples.append(hist)
|
|
return np.float32(samples)
|
|
|
|
|
|
def ocr_digit_samples_knn(__samples, knn_model: cv2.ml.KNearest, k: int = 4):
|
|
_, results, _, _ = knn_model.findNearest(__samples, k)
|
|
return [int(r) for r in results.ravel()]
|
|
|
|
|
|
class OcrKNearestTextProvider(OcrTextProvider):
|
|
_ContourFilter = Callable[["Mat"], bool]
|
|
_RectsFilter = Callable[[Sequence[int]], bool]
|
|
|
|
def __init__(self, model: "KNearest"):
|
|
self.model = model
|
|
|
|
def contours(
|
|
self, img: "Mat", /, *, contours_filter: Optional[_ContourFilter] = None
|
|
):
|
|
cnts, _ = cv2.findContours(img, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
|
|
if contours_filter:
|
|
cnts = list(filter(contours_filter, cnts))
|
|
|
|
return cnts
|
|
|
|
def result_raw(
|
|
self,
|
|
img: "Mat",
|
|
/,
|
|
*,
|
|
fix_rects: bool = True,
|
|
contours_filter: Optional[_ContourFilter] = None,
|
|
rects_filter: Optional[_RectsFilter] = None,
|
|
):
|
|
"""
|
|
:param img: grayscaled roi
|
|
"""
|
|
|
|
try:
|
|
cnts, _ = cv2.findContours(img, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
|
if contours_filter:
|
|
cnts = list(filter(contours_filter, cnts))
|
|
|
|
rects = [cv2.boundingRect(cnt) for cnt in cnts]
|
|
if fix_rects and rects_filter:
|
|
rects = FixRects.connect_broken(rects, img.shape[1], img.shape[0]) # type: ignore
|
|
rects = list(filter(rects_filter, rects))
|
|
rects = FixRects.split_connected(img, rects)
|
|
elif fix_rects:
|
|
rects = FixRects.connect_broken(rects, img.shape[1], img.shape[0]) # type: ignore
|
|
rects = FixRects.split_connected(img, rects)
|
|
elif rects_filter:
|
|
rects = list(filter(rects_filter, rects))
|
|
|
|
rects = sorted(rects, key=lambda r: r[0])
|
|
|
|
digits = []
|
|
for rect in rects:
|
|
digit = crop_xywh(img, rect)
|
|
digit = resize_fill_square(digit, 20)
|
|
digits.append(digit)
|
|
samples = preprocess_hog(digits)
|
|
return ocr_digit_samples_knn(samples, self.model)
|
|
except Exception:
|
|
logger.exception("Error occurred during KNearest OCR")
|
|
return None
|
|
|
|
def result(
|
|
self,
|
|
img: "Mat",
|
|
/,
|
|
*,
|
|
fix_rects: bool = True,
|
|
contours_filter: Optional[_ContourFilter] = None,
|
|
rects_filter: Optional[_RectsFilter] = None,
|
|
):
|
|
"""
|
|
:param img: grayscaled roi
|
|
"""
|
|
|
|
raw = self.result_raw(
|
|
img,
|
|
fix_rects=fix_rects,
|
|
contours_filter=contours_filter,
|
|
rects_filter=rects_filter,
|
|
)
|
|
return (
|
|
"".join(["".join(str(r) for r in raw if r > -1)])
|
|
if raw is not None
|
|
else None
|
|
)
|