mirror of
https://github.com/283375/arcaea-offline-ocr.git
synced 2025-04-18 21:10:17 +00:00
222 lines
8.3 KiB
Python
222 lines
8.3 KiB
Python
from datetime import datetime
|
|
from typing import TYPE_CHECKING, List, Optional, Tuple, Union
|
|
|
|
import attrs
|
|
import cv2
|
|
import numpy as np
|
|
|
|
from ....crop import crop_xywh
|
|
from ....ocr import preprocess_hog
|
|
from ....types import Mat, XYWHRect, cv2_ml_KNearest
|
|
from ....utils import construct_int_xywh_rect
|
|
from .colors import *
|
|
from .rois import ChieriBotV4Rois
|
|
|
|
if TYPE_CHECKING:
|
|
from paddleocr import PaddleOCR
|
|
|
|
|
|
@attrs.define
|
|
class ChieriBotV4OcrResultItem:
|
|
rating_class: int
|
|
title: str
|
|
score: int
|
|
pure: int
|
|
far: int
|
|
lost: int
|
|
date: Union[datetime, str]
|
|
|
|
|
|
class ChieriBotV4Ocr:
|
|
def __init__(
|
|
self,
|
|
paddle_ocr: "PaddleOCR",
|
|
knn_digits_model: cv2_ml_KNearest,
|
|
factor: Optional[float] = 1.0,
|
|
):
|
|
self.__paddle_ocr = paddle_ocr
|
|
self.__knn_digits_model = knn_digits_model
|
|
self.__rois = ChieriBotV4Rois(factor)
|
|
|
|
@property
|
|
def paddle_ocr(self):
|
|
return self.__paddle_ocr
|
|
|
|
@paddle_ocr.setter
|
|
def paddle_ocr(self, paddle_ocr: "PaddleOCR"):
|
|
self.__paddle_ocr = paddle_ocr
|
|
|
|
@property
|
|
def knn_digits_model(self):
|
|
return self.__knn_digits_model
|
|
|
|
@knn_digits_model.setter
|
|
def knn_digits_model(self, knn_digits_model: Mat):
|
|
self.__knn_digits_model = knn_digits_model
|
|
|
|
@property
|
|
def rois(self):
|
|
return self.__rois
|
|
|
|
@property
|
|
def factor(self):
|
|
return self.__rois.factor
|
|
|
|
@factor.setter
|
|
def factor(self, factor: float):
|
|
self.__rois.factor = factor
|
|
|
|
def ocr_component_rating_class(self, component_bgr: Mat) -> int:
|
|
rating_class_rect = construct_int_xywh_rect(
|
|
self.rois.component_rois.rating_class_rect
|
|
)
|
|
rating_class_roi = crop_xywh(component_bgr, rating_class_rect)
|
|
rating_class_roi = cv2.cvtColor(rating_class_roi, cv2.COLOR_BGR2HSV)
|
|
rating_class_masks = [
|
|
cv2.inRange(rating_class_roi, PRS_MIN_HSV, PRS_MAX_HSV),
|
|
cv2.inRange(rating_class_roi, FTR_MIN_HSV, FTR_MAX_HSV),
|
|
cv2.inRange(rating_class_roi, BYD_MIN_HSV, BYD_MAX_HSV),
|
|
] # prs, ftr, byd only
|
|
rating_class_results = [np.count_nonzero(m) for m in rating_class_masks]
|
|
if max(rating_class_results) < 70:
|
|
return 0
|
|
else:
|
|
return max(enumerate(rating_class_results), key=lambda i: i[1])[0] + 1
|
|
|
|
def ocr_component_title(self, component_bgr: Mat) -> str:
|
|
# sourcery skip: inline-immediately-returned-variable
|
|
title_rect = construct_int_xywh_rect(self.rois.component_rois.title_rect)
|
|
title_roi = crop_xywh(component_bgr, title_rect)
|
|
ocr_result = self.paddle_ocr.ocr(title_roi, cls=False)
|
|
title = ocr_result[0][-1][1][0] if ocr_result and ocr_result[0] else ""
|
|
return title
|
|
|
|
def ocr_component_score(self, component_bgr: Mat) -> int:
|
|
# sourcery skip: inline-immediately-returned-variable
|
|
score_rect = construct_int_xywh_rect(self.rois.component_rois.score_rect)
|
|
score_roi = cv2.cvtColor(
|
|
crop_xywh(component_bgr, score_rect), cv2.COLOR_BGR2GRAY
|
|
)
|
|
_, score_roi = cv2.threshold(
|
|
score_roi, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU
|
|
)
|
|
score_str = self.paddle_ocr.ocr(score_roi, cls=False)[0][-1][1][0]
|
|
score = int(score_str.replace("'", "").replace(" ", ""))
|
|
return score
|
|
|
|
def find_pfl_rects(self, component_pfl_processed: Mat) -> List[List[int]]:
|
|
# sourcery skip: inline-immediately-returned-variable
|
|
pfl_roi_find = cv2.morphologyEx(
|
|
component_pfl_processed,
|
|
cv2.MORPH_CLOSE,
|
|
cv2.getStructuringElement(cv2.MORPH_RECT, [10, 1]),
|
|
)
|
|
pfl_contours, _ = cv2.findContours(
|
|
pfl_roi_find, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE
|
|
)
|
|
pfl_rects = [cv2.boundingRect(c) for c in pfl_contours]
|
|
pfl_rects = [
|
|
r for r in pfl_rects if r[3] > component_pfl_processed.shape[0] * 0.1
|
|
]
|
|
pfl_rects = sorted(pfl_rects, key=lambda r: r[1])
|
|
pfl_rects_adjusted = [
|
|
(
|
|
max(rect[0] - 2, 0),
|
|
rect[1],
|
|
min(rect[2] + 2, component_pfl_processed.shape[1]),
|
|
rect[3],
|
|
)
|
|
for rect in pfl_rects
|
|
]
|
|
return pfl_rects_adjusted
|
|
|
|
def preprocess_component_pfl(self, component_bgr: Mat) -> Mat:
|
|
pfl_rect = construct_int_xywh_rect(self.rois.component_rois.pfl_rect)
|
|
pfl_roi = crop_xywh(component_bgr, pfl_rect)
|
|
pfl_roi_hsv = cv2.cvtColor(pfl_roi, cv2.COLOR_BGR2HSV)
|
|
|
|
# fill the pfl bg with background color
|
|
bg_point = [round(i) for i in self.rois.component_rois.bg_point]
|
|
bg_color = component_bgr[bg_point[1]][bg_point[0]]
|
|
pure_bg_mask = cv2.inRange(pfl_roi_hsv, PURE_BG_MIN_HSV, PURE_BG_MAX_HSV)
|
|
far_bg_mask = cv2.inRange(pfl_roi_hsv, FAR_BG_MIN_HSV, FAR_BG_MAX_HSV)
|
|
lost_bg_mask = cv2.inRange(pfl_roi_hsv, LOST_BG_MIN_HSV, LOST_BG_MAX_HSV)
|
|
pfl_roi[np.where(pure_bg_mask != 0)] = bg_color
|
|
pfl_roi[np.where(far_bg_mask != 0)] = bg_color
|
|
pfl_roi[np.where(lost_bg_mask != 0)] = bg_color
|
|
|
|
# threshold
|
|
pfl_roi = cv2.cvtColor(pfl_roi, cv2.COLOR_BGR2GRAY)
|
|
# get threshold of blurred image, try ignoring the lines of bg bar
|
|
pfl_roi_blurred = cv2.GaussianBlur(pfl_roi, (5, 5), 0)
|
|
# pfl_roi_blurred = cv2.medianBlur(pfl_roi, 3)
|
|
_, pfl_roi_blurred_threshold = cv2.threshold(
|
|
pfl_roi_blurred, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU
|
|
)
|
|
# and a threshold of the original roi
|
|
_, pfl_roi_threshold = cv2.threshold(
|
|
pfl_roi, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU
|
|
)
|
|
# turn thresholds into black background
|
|
if pfl_roi_blurred_threshold[2][2] == 255:
|
|
pfl_roi_blurred_threshold = 255 - pfl_roi_blurred_threshold
|
|
if pfl_roi_threshold[2][2] == 255:
|
|
pfl_roi_threshold = 255 - pfl_roi_threshold
|
|
# return a bitwise_and result
|
|
result = cv2.bitwise_and(pfl_roi_blurred_threshold, pfl_roi_threshold)
|
|
result_eroded = cv2.erode(
|
|
result, cv2.getStructuringElement(cv2.MORPH_CROSS, (2, 2))
|
|
)
|
|
return result_eroded if len(self.find_pfl_rects(result_eroded)) == 3 else result
|
|
|
|
def ocr_component_pfl(self, component_bgr: Mat) -> Tuple[int, int, int]:
|
|
try:
|
|
pfl_roi = self.preprocess_component_pfl(component_bgr)
|
|
pfl_rects = self.find_pfl_rects(pfl_roi)
|
|
pure_far_lost = []
|
|
for pfl_roi_rect in pfl_rects:
|
|
roi = crop_xywh(pfl_roi, pfl_roi_rect)
|
|
digit_contours, _ = cv2.findContours(
|
|
roi, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE
|
|
)
|
|
digit_rects = sorted(
|
|
[cv2.boundingRect(c) for c in digit_contours],
|
|
key=lambda r: r[0],
|
|
)
|
|
digits = []
|
|
for digit_rect in digit_rects:
|
|
digit = crop_xywh(roi, digit_rect)
|
|
digit = cv2.resize(digit, (20, 20))
|
|
digits.append(digit)
|
|
samples = preprocess_hog(digits)
|
|
|
|
_, results, _, _ = self.knn_digits_model.findNearest(samples, 4)
|
|
results = [str(int(i)) for i in results.ravel()]
|
|
pure_far_lost.append(int("".join(results)))
|
|
return tuple(pure_far_lost)
|
|
except Exception:
|
|
return (-1, -1, -1)
|
|
|
|
def ocr_component(self, component_bgr: Mat) -> ChieriBotV4OcrResultItem:
|
|
component_blur = cv2.GaussianBlur(component_bgr, (5, 5), 0)
|
|
rating_class = self.ocr_component_rating_class(component_blur)
|
|
title = self.ocr_component_title(component_blur)
|
|
score = self.ocr_component_score(component_blur)
|
|
pure, far, lost = self.ocr_component_pfl(component_bgr)
|
|
return ChieriBotV4OcrResultItem(
|
|
rating_class=rating_class,
|
|
title=title,
|
|
score=score,
|
|
pure=pure,
|
|
far=far,
|
|
lost=lost,
|
|
date="",
|
|
)
|
|
|
|
def ocr(self, img_bgr: Mat) -> List[ChieriBotV4OcrResultItem]:
|
|
self.factor = img_bgr.shape[0] / 4400
|
|
return [
|
|
self.ocr_component(component_bgr)
|
|
for component_bgr in self.rois.components(img_bgr)
|
|
]
|