2023-08-09 18:25:01 +08:00

222 lines
8.3 KiB
Python

from datetime import datetime
from typing import TYPE_CHECKING, List, Optional, Tuple, Union
import attrs
import cv2
import numpy as np
from ....crop import crop_xywh
from ....ocr import preprocess_hog
from ....types import Mat, XYWHRect, cv2_ml_KNearest
from ....utils import construct_int_xywh_rect
from .colors import *
from .rois import ChieriBotV4Rois
if TYPE_CHECKING:
from paddleocr import PaddleOCR
@attrs.define
class ChieriBotV4OcrResultItem:
rating_class: int
title: str
score: int
pure: int
far: int
lost: int
date: Union[datetime, str]
class ChieriBotV4Ocr:
def __init__(
self,
paddle_ocr: "PaddleOCR",
knn_digits_model: cv2_ml_KNearest,
factor: Optional[float] = 1.0,
):
self.__paddle_ocr = paddle_ocr
self.__knn_digits_model = knn_digits_model
self.__rois = ChieriBotV4Rois(factor)
@property
def paddle_ocr(self):
return self.__paddle_ocr
@paddle_ocr.setter
def paddle_ocr(self, paddle_ocr: "PaddleOCR"):
self.__paddle_ocr = paddle_ocr
@property
def knn_digits_model(self):
return self.__knn_digits_model
@knn_digits_model.setter
def knn_digits_model(self, knn_digits_model: Mat):
self.__knn_digits_model = knn_digits_model
@property
def rois(self):
return self.__rois
@property
def factor(self):
return self.__rois.factor
@factor.setter
def factor(self, factor: float):
self.__rois.factor = factor
def ocr_component_rating_class(self, component_bgr: Mat) -> int:
rating_class_rect = construct_int_xywh_rect(
self.rois.component_rois.rating_class_rect
)
rating_class_roi = crop_xywh(component_bgr, rating_class_rect)
rating_class_roi = cv2.cvtColor(rating_class_roi, cv2.COLOR_BGR2HSV)
rating_class_masks = [
cv2.inRange(rating_class_roi, PRS_MIN_HSV, PRS_MAX_HSV),
cv2.inRange(rating_class_roi, FTR_MIN_HSV, FTR_MAX_HSV),
cv2.inRange(rating_class_roi, BYD_MIN_HSV, BYD_MAX_HSV),
] # prs, ftr, byd only
rating_class_results = [np.count_nonzero(m) for m in rating_class_masks]
if max(rating_class_results) < 70:
return 0
else:
return max(enumerate(rating_class_results), key=lambda i: i[1])[0] + 1
def ocr_component_title(self, component_bgr: Mat) -> str:
# sourcery skip: inline-immediately-returned-variable
title_rect = construct_int_xywh_rect(self.rois.component_rois.title_rect)
title_roi = crop_xywh(component_bgr, title_rect)
ocr_result = self.paddle_ocr.ocr(title_roi, cls=False)
title = ocr_result[0][-1][1][0] if ocr_result and ocr_result[0] else ""
return title
def ocr_component_score(self, component_bgr: Mat) -> int:
# sourcery skip: inline-immediately-returned-variable
score_rect = construct_int_xywh_rect(self.rois.component_rois.score_rect)
score_roi = cv2.cvtColor(
crop_xywh(component_bgr, score_rect), cv2.COLOR_BGR2GRAY
)
_, score_roi = cv2.threshold(
score_roi, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU
)
score_str = self.paddle_ocr.ocr(score_roi, cls=False)[0][-1][1][0]
score = int(score_str.replace("'", "").replace(" ", ""))
return score
def find_pfl_rects(self, component_pfl_processed: Mat) -> List[List[int]]:
# sourcery skip: inline-immediately-returned-variable
pfl_roi_find = cv2.morphologyEx(
component_pfl_processed,
cv2.MORPH_CLOSE,
cv2.getStructuringElement(cv2.MORPH_RECT, [10, 1]),
)
pfl_contours, _ = cv2.findContours(
pfl_roi_find, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE
)
pfl_rects = [cv2.boundingRect(c) for c in pfl_contours]
pfl_rects = [
r for r in pfl_rects if r[3] > component_pfl_processed.shape[0] * 0.1
]
pfl_rects = sorted(pfl_rects, key=lambda r: r[1])
pfl_rects_adjusted = [
(
max(rect[0] - 2, 0),
rect[1],
min(rect[2] + 2, component_pfl_processed.shape[1]),
rect[3],
)
for rect in pfl_rects
]
return pfl_rects_adjusted
def preprocess_component_pfl(self, component_bgr: Mat) -> Mat:
pfl_rect = construct_int_xywh_rect(self.rois.component_rois.pfl_rect)
pfl_roi = crop_xywh(component_bgr, pfl_rect)
pfl_roi_hsv = cv2.cvtColor(pfl_roi, cv2.COLOR_BGR2HSV)
# fill the pfl bg with background color
bg_point = [round(i) for i in self.rois.component_rois.bg_point]
bg_color = component_bgr[bg_point[1]][bg_point[0]]
pure_bg_mask = cv2.inRange(pfl_roi_hsv, PURE_BG_MIN_HSV, PURE_BG_MAX_HSV)
far_bg_mask = cv2.inRange(pfl_roi_hsv, FAR_BG_MIN_HSV, FAR_BG_MAX_HSV)
lost_bg_mask = cv2.inRange(pfl_roi_hsv, LOST_BG_MIN_HSV, LOST_BG_MAX_HSV)
pfl_roi[np.where(pure_bg_mask != 0)] = bg_color
pfl_roi[np.where(far_bg_mask != 0)] = bg_color
pfl_roi[np.where(lost_bg_mask != 0)] = bg_color
# threshold
pfl_roi = cv2.cvtColor(pfl_roi, cv2.COLOR_BGR2GRAY)
# get threshold of blurred image, try ignoring the lines of bg bar
pfl_roi_blurred = cv2.GaussianBlur(pfl_roi, (5, 5), 0)
# pfl_roi_blurred = cv2.medianBlur(pfl_roi, 3)
_, pfl_roi_blurred_threshold = cv2.threshold(
pfl_roi_blurred, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU
)
# and a threshold of the original roi
_, pfl_roi_threshold = cv2.threshold(
pfl_roi, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU
)
# turn thresholds into black background
if pfl_roi_blurred_threshold[2][2] == 255:
pfl_roi_blurred_threshold = 255 - pfl_roi_blurred_threshold
if pfl_roi_threshold[2][2] == 255:
pfl_roi_threshold = 255 - pfl_roi_threshold
# return a bitwise_and result
result = cv2.bitwise_and(pfl_roi_blurred_threshold, pfl_roi_threshold)
result_eroded = cv2.erode(
result, cv2.getStructuringElement(cv2.MORPH_CROSS, (2, 2))
)
return result_eroded if len(self.find_pfl_rects(result_eroded)) == 3 else result
def ocr_component_pfl(self, component_bgr: Mat) -> Tuple[int, int, int]:
try:
pfl_roi = self.preprocess_component_pfl(component_bgr)
pfl_rects = self.find_pfl_rects(pfl_roi)
pure_far_lost = []
for pfl_roi_rect in pfl_rects:
roi = crop_xywh(pfl_roi, pfl_roi_rect)
digit_contours, _ = cv2.findContours(
roi, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE
)
digit_rects = sorted(
[cv2.boundingRect(c) for c in digit_contours],
key=lambda r: r[0],
)
digits = []
for digit_rect in digit_rects:
digit = crop_xywh(roi, digit_rect)
digit = cv2.resize(digit, (20, 20))
digits.append(digit)
samples = preprocess_hog(digits)
_, results, _, _ = self.knn_digits_model.findNearest(samples, 4)
results = [str(int(i)) for i in results.ravel()]
pure_far_lost.append(int("".join(results)))
return tuple(pure_far_lost)
except Exception:
return (-1, -1, -1)
def ocr_component(self, component_bgr: Mat) -> ChieriBotV4OcrResultItem:
component_blur = cv2.GaussianBlur(component_bgr, (5, 5), 0)
rating_class = self.ocr_component_rating_class(component_blur)
title = self.ocr_component_title(component_blur)
score = self.ocr_component_score(component_blur)
pure, far, lost = self.ocr_component_pfl(component_bgr)
return ChieriBotV4OcrResultItem(
rating_class=rating_class,
title=title,
score=score,
pure=pure,
far=far,
lost=lost,
date="",
)
def ocr(self, img_bgr: Mat) -> List[ChieriBotV4OcrResultItem]:
self.factor = img_bgr.shape[0] / 4400
return [
self.ocr_component(component_bgr)
for component_bgr in self.rois.components(img_bgr)
]