mirror of
https://github.com/283375/arcaea-offline-ocr.git
synced 2025-04-11 09:30:17 +00:00
refactor: replace device
structure
This commit is contained in:
parent
897705d23d
commit
2b01f68a73
@ -2,24 +2,24 @@ import cv2
|
||||
import numpy as np
|
||||
from PIL import Image
|
||||
|
||||
from .crop import crop_xywh
|
||||
from .extractor import Extractor
|
||||
from .masker import Masker
|
||||
from .ocr import (
|
||||
from ..crop import crop_xywh
|
||||
from ..ocr import (
|
||||
FixRects,
|
||||
ocr_digit_samples_knn,
|
||||
ocr_digits_by_contour_knn,
|
||||
preprocess_hog,
|
||||
resize_fill_square,
|
||||
)
|
||||
from .phash_db import ImagePHashDatabase
|
||||
from ..phash_db import ImagePHashDatabase
|
||||
from .roi.extractor import DeviceRoiExtractor
|
||||
from .roi.masker import DeviceRoiMasker
|
||||
|
||||
|
||||
class DeviceOcr:
|
||||
def __init__(
|
||||
self,
|
||||
extractor: Extractor,
|
||||
masker: Masker,
|
||||
extractor: DeviceRoiExtractor,
|
||||
masker: DeviceRoiMasker,
|
||||
knn_model: cv2.ml.KNearest,
|
||||
phash_db: ImagePHashDatabase,
|
||||
):
|
@ -1,2 +1 @@
|
||||
from .common import DeviceRoiExtractor
|
||||
from .sizes import *
|
@ -1,7 +1,7 @@
|
||||
import cv2
|
||||
|
||||
from ..crop import crop_xywh
|
||||
from .sizes.common import DeviceRoiSizes
|
||||
from ....crop import crop_xywh
|
||||
from ..definitions.common import DeviceRoiSizes
|
||||
|
||||
|
||||
class DeviceRoiExtractor:
|
@ -1,53 +0,0 @@
|
||||
from typing import Tuple
|
||||
|
||||
from ...types import Mat
|
||||
from .definition import DeviceV1
|
||||
|
||||
__all__ = [
|
||||
"crop_img",
|
||||
"crop_from_device_attr",
|
||||
"crop_to_pure",
|
||||
"crop_to_far",
|
||||
"crop_to_lost",
|
||||
"crop_to_max_recall",
|
||||
"crop_to_rating_class",
|
||||
"crop_to_score",
|
||||
"crop_to_title",
|
||||
]
|
||||
|
||||
|
||||
def crop_img(img: Mat, *, top: int, left: int, bottom: int, right: int):
|
||||
return img[top:bottom, left:right]
|
||||
|
||||
|
||||
def crop_from_device_attr(img: Mat, rect: Tuple[int, int, int, int]):
|
||||
x, y, w, h = rect
|
||||
return crop_img(img, top=y, left=x, bottom=y + h, right=x + w)
|
||||
|
||||
|
||||
def crop_to_pure(screenshot: Mat, device: DeviceV1):
|
||||
return crop_from_device_attr(screenshot, device.pure)
|
||||
|
||||
|
||||
def crop_to_far(screenshot: Mat, device: DeviceV1):
|
||||
return crop_from_device_attr(screenshot, device.far)
|
||||
|
||||
|
||||
def crop_to_lost(screenshot: Mat, device: DeviceV1):
|
||||
return crop_from_device_attr(screenshot, device.lost)
|
||||
|
||||
|
||||
def crop_to_max_recall(screenshot: Mat, device: DeviceV1):
|
||||
return crop_from_device_attr(screenshot, device.max_recall)
|
||||
|
||||
|
||||
def crop_to_rating_class(screenshot: Mat, device: DeviceV1):
|
||||
return crop_from_device_attr(screenshot, device.rating_class)
|
||||
|
||||
|
||||
def crop_to_score(screenshot: Mat, device: DeviceV1):
|
||||
return crop_from_device_attr(screenshot, device.score)
|
||||
|
||||
|
||||
def crop_to_title(screenshot: Mat, device: DeviceV1):
|
||||
return crop_from_device_attr(screenshot, device.title)
|
@ -1,37 +0,0 @@
|
||||
from dataclasses import dataclass
|
||||
from typing import Any, Dict, Tuple
|
||||
|
||||
__all__ = ["DeviceV1"]
|
||||
|
||||
|
||||
@dataclass(kw_only=True)
|
||||
class DeviceV1:
|
||||
version: int
|
||||
uuid: str
|
||||
name: str
|
||||
pure: Tuple[int, int, int, int]
|
||||
far: Tuple[int, int, int, int]
|
||||
lost: Tuple[int, int, int, int]
|
||||
max_recall: Tuple[int, int, int, int]
|
||||
rating_class: Tuple[int, int, int, int]
|
||||
score: Tuple[int, int, int, int]
|
||||
title: Tuple[int, int, int, int]
|
||||
|
||||
@classmethod
|
||||
def from_json_object(cls, json_dict: Dict[str, Any]):
|
||||
if json_dict["version"] == 1:
|
||||
return cls(
|
||||
version=1,
|
||||
uuid=json_dict["uuid"],
|
||||
name=json_dict["name"],
|
||||
pure=json_dict["pure"],
|
||||
far=json_dict["far"],
|
||||
lost=json_dict["lost"],
|
||||
max_recall=json_dict["max_recall"],
|
||||
rating_class=json_dict["rating_class"],
|
||||
score=json_dict["score"],
|
||||
title=json_dict["title"],
|
||||
)
|
||||
|
||||
def repr_info(self):
|
||||
return f"Device(version={self.version}, uuid={repr(self.uuid)}, name={repr(self.name)})"
|
@ -1,86 +0,0 @@
|
||||
from typing import List
|
||||
|
||||
import cv2
|
||||
|
||||
from ...crop import crop_xywh
|
||||
from ...mask import mask_gray, mask_white
|
||||
from ...ocr import ocr_digits_by_contour_knn, ocr_rating_class
|
||||
from ...types import Mat, cv2_ml_KNearest
|
||||
from ..shared import DeviceOcrResult
|
||||
from .crop import *
|
||||
from .definition import DeviceV1
|
||||
|
||||
|
||||
class DeviceV1Ocr:
|
||||
def __init__(self, device: DeviceV1, knn_model: cv2_ml_KNearest):
|
||||
self.__device = device
|
||||
self.__knn_model = knn_model
|
||||
|
||||
@property
|
||||
def device(self):
|
||||
return self.__device
|
||||
|
||||
@device.setter
|
||||
def device(self, value):
|
||||
self.__device = value
|
||||
|
||||
@property
|
||||
def knn_model(self):
|
||||
return self.__knn_model
|
||||
|
||||
@knn_model.setter
|
||||
def knn_model(self, value):
|
||||
self.__knn_model = value
|
||||
|
||||
def preprocess_score_roi(self, __roi_gray: Mat) -> List[Mat]:
|
||||
roi_gray = __roi_gray.copy()
|
||||
contours, _ = cv2.findContours(
|
||||
roi_gray, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE
|
||||
)
|
||||
for contour in contours:
|
||||
rect = cv2.boundingRect(contour)
|
||||
if rect[3] > roi_gray.shape[0] * 0.6:
|
||||
continue
|
||||
roi_gray = cv2.fillPoly(roi_gray, [contour], 0)
|
||||
return roi_gray
|
||||
|
||||
def ocr(self, img_bgr: Mat):
|
||||
rating_class_roi = crop_to_rating_class(img_bgr, self.device)
|
||||
rating_class = ocr_rating_class(rating_class_roi)
|
||||
|
||||
pfl_mr_roi = [
|
||||
crop_to_pure(img_bgr, self.device),
|
||||
crop_to_far(img_bgr, self.device),
|
||||
crop_to_lost(img_bgr, self.device),
|
||||
crop_to_max_recall(img_bgr, self.device),
|
||||
]
|
||||
pfl_mr_roi = [mask_gray(roi) for roi in pfl_mr_roi]
|
||||
|
||||
pure, far, lost = [
|
||||
ocr_digits_by_contour_knn(roi, self.knn_model) for roi in pfl_mr_roi[:3]
|
||||
]
|
||||
|
||||
max_recall_contours, _ = cv2.findContours(
|
||||
pfl_mr_roi[3], cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE
|
||||
)
|
||||
max_recall_rects = [cv2.boundingRect(c) for c in max_recall_contours]
|
||||
max_recall_rect = sorted(max_recall_rects, key=lambda r: r[0])[-1]
|
||||
max_recall_roi = crop_xywh(img_bgr, max_recall_rect)
|
||||
max_recall = ocr_digits_by_contour_knn(max_recall_roi, self.knn_model)
|
||||
|
||||
score_roi = crop_to_score(img_bgr, self.device)
|
||||
score_roi = mask_white(score_roi)
|
||||
score_roi = self.preprocess_score_roi(score_roi)
|
||||
score = ocr_digits_by_contour_knn(score_roi, self.knn_model)
|
||||
|
||||
return DeviceOcrResult(
|
||||
song_id=None,
|
||||
title=None,
|
||||
rating_class=rating_class,
|
||||
pure=pure,
|
||||
far=far,
|
||||
lost=lost,
|
||||
score=score,
|
||||
max_recall=max_recall,
|
||||
clear_type=None,
|
||||
)
|
@ -1,4 +0,0 @@
|
||||
from .definition import DeviceV2
|
||||
from .ocr import DeviceV2Ocr
|
||||
from .rois import DeviceV2AutoRois, DeviceV2Rois
|
||||
from .shared import MAX_RECALL_CLOSE_KERNEL
|
@ -1,26 +0,0 @@
|
||||
from typing import Iterable
|
||||
|
||||
from attrs import define, field
|
||||
|
||||
from ...types import XYWHRect
|
||||
|
||||
|
||||
def iterable_to_xywh_rect(__iter: Iterable) -> XYWHRect:
|
||||
return XYWHRect(*__iter)
|
||||
|
||||
|
||||
@define(kw_only=True)
|
||||
class DeviceV2:
|
||||
version = field(type=int)
|
||||
uuid = field(type=str)
|
||||
name = field(type=str)
|
||||
crop_black_edges = field(type=bool)
|
||||
factor = field(type=float)
|
||||
pure = field(converter=iterable_to_xywh_rect, default=[0, 0, 0, 0])
|
||||
far = field(converter=iterable_to_xywh_rect, default=[0, 0, 0, 0])
|
||||
lost = field(converter=iterable_to_xywh_rect, default=[0, 0, 0, 0])
|
||||
score = field(converter=iterable_to_xywh_rect, default=[0, 0, 0, 0])
|
||||
max_recall_rating_class = field(
|
||||
converter=iterable_to_xywh_rect, default=[0, 0, 0, 0]
|
||||
)
|
||||
title = field(converter=iterable_to_xywh_rect, default=[0, 0, 0, 0])
|
@ -1,172 +0,0 @@
|
||||
import math
|
||||
from functools import lru_cache
|
||||
from typing import Sequence
|
||||
|
||||
import cv2
|
||||
import numpy as np
|
||||
from PIL import Image
|
||||
|
||||
from ...crop import crop_xywh
|
||||
from ...mask import (
|
||||
mask_byd,
|
||||
mask_ftr,
|
||||
mask_gray,
|
||||
mask_max_recall_purple,
|
||||
mask_pfl_white,
|
||||
mask_prs,
|
||||
mask_pst,
|
||||
mask_white,
|
||||
)
|
||||
from ...ocr import (
|
||||
FixRects,
|
||||
ocr_digit_samples_knn,
|
||||
ocr_digits_by_contour_knn,
|
||||
preprocess_hog,
|
||||
resize_fill_square,
|
||||
)
|
||||
from ...phash_db import ImagePHashDatabase
|
||||
from ...sift_db import SIFTDatabase
|
||||
from ...types import Mat, cv2_ml_KNearest
|
||||
from ..shared import DeviceOcrResult
|
||||
from .preprocess import find_digits_preprocess
|
||||
from .rois import DeviceV2Rois
|
||||
from .shared import MAX_RECALL_CLOSE_KERNEL
|
||||
from .sizes import SizesV2
|
||||
|
||||
|
||||
class DeviceV2Ocr:
|
||||
def __init__(self, knn_model: cv2_ml_KNearest, phash_db: ImagePHashDatabase):
|
||||
self.__knn_model = knn_model
|
||||
self.__phash_db = phash_db
|
||||
|
||||
@property
|
||||
def knn_model(self):
|
||||
if not self.__knn_model:
|
||||
raise ValueError("`knn_model` unset.")
|
||||
return self.__knn_model
|
||||
|
||||
@knn_model.setter
|
||||
def knn_model(self, value: cv2_ml_KNearest):
|
||||
self.__knn_model = value
|
||||
|
||||
@property
|
||||
def phash_db(self):
|
||||
if not self.__phash_db:
|
||||
raise ValueError("`phash_db` unset.")
|
||||
return self.__phash_db
|
||||
|
||||
@phash_db.setter
|
||||
def phash_db(self, value: SIFTDatabase):
|
||||
self.__phash_db = value
|
||||
|
||||
@lru_cache
|
||||
def _get_digit_widths(self, num_list: Sequence[int], factor: float):
|
||||
widths = set()
|
||||
for n in num_list:
|
||||
lower = math.floor(n * factor)
|
||||
upper = math.ceil(n * factor)
|
||||
widths.update(range(lower, upper + 1))
|
||||
return widths
|
||||
|
||||
def _base_ocr_pfl(self, roi_masked: Mat, factor: float = 1.0):
|
||||
contours, _ = cv2.findContours(
|
||||
roi_masked, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE
|
||||
)
|
||||
filtered_contours = [c for c in contours if cv2.contourArea(c) >= 5 * factor]
|
||||
rects = [cv2.boundingRect(c) for c in filtered_contours]
|
||||
rects = FixRects.connect_broken(rects, roi_masked.shape[1], roi_masked.shape[0])
|
||||
rect_contour_map = dict(zip(rects, filtered_contours))
|
||||
|
||||
filtered_rects = [r for r in rects if r[2] >= 5 * factor and r[3] >= 6 * factor]
|
||||
filtered_rects = FixRects.split_connected(roi_masked, filtered_rects)
|
||||
filtered_rects = sorted(filtered_rects, key=lambda r: r[0])
|
||||
|
||||
roi_ocr = roi_masked.copy()
|
||||
filtered_contours_flattened = {tuple(c.flatten()) for c in filtered_contours}
|
||||
for contour in contours:
|
||||
if tuple(contour.flatten()) in filtered_contours_flattened:
|
||||
continue
|
||||
roi_ocr = cv2.fillPoly(roi_ocr, [contour], [0])
|
||||
digit_rois = [
|
||||
resize_fill_square(crop_xywh(roi_ocr, r), 20)
|
||||
for r in sorted(filtered_rects, key=lambda r: r[0])
|
||||
]
|
||||
# [cv2.imshow(f"r{i}", r) for i, r in enumerate(digit_rois)]
|
||||
# cv2.waitKey(0)
|
||||
samples = preprocess_hog(digit_rois)
|
||||
return ocr_digit_samples_knn(samples, self.knn_model)
|
||||
|
||||
def ocr_song_id(self, rois: DeviceV2Rois):
|
||||
jacket = cv2.cvtColor(rois.jacket, cv2.COLOR_BGR2GRAY)
|
||||
return self.phash_db.lookup_image(Image.fromarray(jacket))[0]
|
||||
|
||||
def ocr_rating_class(self, rois: DeviceV2Rois):
|
||||
roi = cv2.cvtColor(rois.max_recall_rating_class, cv2.COLOR_BGR2HSV)
|
||||
results = [mask_pst(roi), mask_prs(roi), mask_ftr(roi), mask_byd(roi)]
|
||||
return max(enumerate(results), key=lambda i: np.count_nonzero(i[1]))[0]
|
||||
|
||||
def ocr_score(self, rois: DeviceV2Rois):
|
||||
roi = cv2.cvtColor(rois.score, cv2.COLOR_BGR2HSV)
|
||||
roi = mask_white(roi)
|
||||
contours, _ = cv2.findContours(roi, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
|
||||
for contour in contours:
|
||||
x, y, w, h = cv2.boundingRect(contour)
|
||||
if h < roi.shape[0] * 0.6:
|
||||
roi = cv2.fillPoly(roi, [contour], [0])
|
||||
return ocr_digits_by_contour_knn(roi, self.knn_model)
|
||||
|
||||
def mask_pfl(self, pfl_roi: Mat, rois: DeviceV2Rois):
|
||||
return (
|
||||
mask_pfl_white(cv2.cvtColor(pfl_roi, cv2.COLOR_BGR2HSV))
|
||||
if isinstance(rois.sizes, SizesV2)
|
||||
else mask_gray(pfl_roi)
|
||||
)
|
||||
|
||||
def ocr_pure(self, rois: DeviceV2Rois):
|
||||
roi = self.mask_pfl(rois.pure, rois)
|
||||
return self._base_ocr_pfl(roi, rois.sizes.factor)
|
||||
|
||||
def ocr_far(self, rois: DeviceV2Rois):
|
||||
roi = self.mask_pfl(rois.far, rois)
|
||||
return self._base_ocr_pfl(roi, rois.sizes.factor)
|
||||
|
||||
def ocr_lost(self, rois: DeviceV2Rois):
|
||||
roi = self.mask_pfl(rois.lost, rois)
|
||||
return self._base_ocr_pfl(roi, rois.sizes.factor)
|
||||
|
||||
def ocr_max_recall(self, rois: DeviceV2Rois):
|
||||
roi = (
|
||||
mask_max_recall_purple(
|
||||
cv2.cvtColor(rois.max_recall_rating_class, cv2.COLOR_BGR2HSV)
|
||||
)
|
||||
if isinstance(rois.sizes, SizesV2)
|
||||
else mask_gray(rois.max_recall_rating_class)
|
||||
)
|
||||
roi_closed = cv2.morphologyEx(roi, cv2.MORPH_CLOSE, MAX_RECALL_CLOSE_KERNEL)
|
||||
contours, _ = cv2.findContours(
|
||||
roi_closed, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE
|
||||
)
|
||||
rects = sorted(
|
||||
[cv2.boundingRect(c) for c in contours], key=lambda r: r[0], reverse=True
|
||||
)
|
||||
max_recall_roi = crop_xywh(roi, rects[0])
|
||||
return ocr_digits_by_contour_knn(max_recall_roi, self.knn_model)
|
||||
|
||||
def ocr(self, rois: DeviceV2Rois):
|
||||
song_id = self.ocr_song_id(rois)
|
||||
rating_class = self.ocr_rating_class(rois)
|
||||
score = self.ocr_score(rois)
|
||||
pure = self.ocr_pure(rois)
|
||||
far = self.ocr_far(rois)
|
||||
lost = self.ocr_lost(rois)
|
||||
max_recall = self.ocr_max_recall(rois)
|
||||
|
||||
return DeviceOcrResult(
|
||||
rating_class=rating_class,
|
||||
pure=pure,
|
||||
far=far,
|
||||
lost=lost,
|
||||
score=score,
|
||||
max_recall=max_recall,
|
||||
song_id=song_id,
|
||||
)
|
@ -1,54 +0,0 @@
|
||||
import cv2
|
||||
|
||||
from ...types import Mat
|
||||
from .shared import *
|
||||
|
||||
|
||||
def find_digits_preprocess(__img_masked: Mat) -> Mat:
|
||||
img = __img_masked.copy()
|
||||
img_denoised = cv2.morphologyEx(img, cv2.MORPH_OPEN, PFL_DENOISE_KERNEL)
|
||||
# img_denoised = cv2.bitwise_and(img, img_denoised)
|
||||
|
||||
denoise_contours, _ = cv2.findContours(
|
||||
img_denoised, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE
|
||||
)
|
||||
# cv2.drawContours(img_denoised, contours, -1, [128], 2)
|
||||
|
||||
# fill all contour.area < max(contour.area) * ratio with black pixels
|
||||
# for denoise purposes
|
||||
|
||||
# define threshold contour area
|
||||
# we assume the smallest digit "1", is 80% height of the image,
|
||||
# and at least 1.5 pixel wide, considering cv2.contourArea always
|
||||
# returns a smaller value than the actual contour area.
|
||||
max_contour_area = __img_masked.shape[0] * 0.8 * 1.5
|
||||
filtered_contours = list(
|
||||
filter(lambda c: cv2.contourArea(c) >= max_contour_area, denoise_contours)
|
||||
)
|
||||
|
||||
filtered_contours_flattened = {tuple(c.flatten()) for c in filtered_contours}
|
||||
|
||||
for contour in denoise_contours:
|
||||
if tuple(contour.flatten()) not in filtered_contours_flattened:
|
||||
img_denoised = cv2.fillPoly(img_denoised, [contour], [0])
|
||||
|
||||
# old algorithm, finding the largest contour area
|
||||
## contour_area_tuples = [(contour, cv2.contourArea(contour)) for contour in contours]
|
||||
## contour_area_tuples = sorted(
|
||||
## contour_area_tuples, key=lambda item: item[1], reverse=True
|
||||
## )
|
||||
## max_contour_area = contour_area_tuples[0][1]
|
||||
## print(max_contour_area, [item[1] for item in contour_area_tuples])
|
||||
## contours_filter_end_index = len(contours)
|
||||
## for i, item in enumerate(contour_area_tuples):
|
||||
## contour, area = item
|
||||
## if area < max_contour_area * 0.15:
|
||||
## contours_filter_end_index = i
|
||||
## break
|
||||
## contours = [item[0] for item in contour_area_tuples]
|
||||
## for contour in contours[-contours_filter_end_index - 1:]:
|
||||
## img = cv2.fillPoly(img, [contour], [0])
|
||||
## img_denoised = cv2.fillPoly(img_denoised, [contour], [0])
|
||||
## contours = contours[:contours_filter_end_index]
|
||||
|
||||
return img_denoised
|
@ -1,199 +0,0 @@
|
||||
from typing import Union
|
||||
|
||||
from ...crop import crop_black_edges, crop_xywh
|
||||
from ...types import Mat, XYWHRect
|
||||
from .definition import DeviceV2
|
||||
from .sizes import Sizes, SizesV1
|
||||
|
||||
|
||||
def to_int(num: Union[int, float]) -> int:
|
||||
return round(num)
|
||||
|
||||
|
||||
class DeviceV2Rois:
|
||||
def __init__(self, device: DeviceV2, img: Mat):
|
||||
self.device = device
|
||||
self.sizes = SizesV1(self.device.factor)
|
||||
self.__img = img
|
||||
|
||||
@staticmethod
|
||||
def construct_int_xywh_rect(x, y, w, h) -> XYWHRect:
|
||||
return XYWHRect(*[to_int(item) for item in [x, y, w, h]])
|
||||
|
||||
@property
|
||||
def img(self):
|
||||
return self.__img
|
||||
|
||||
@img.setter
|
||||
def img(self, img: Mat):
|
||||
self.__img = (
|
||||
crop_black_edges(img) if self.device.crop_black_edges else img.copy()
|
||||
)
|
||||
|
||||
@property
|
||||
def h(self):
|
||||
return self.img.shape[0]
|
||||
|
||||
@property
|
||||
def vmid(self):
|
||||
return self.h / 2
|
||||
|
||||
@property
|
||||
def w(self):
|
||||
return self.img.shape[1]
|
||||
|
||||
@property
|
||||
def hmid(self):
|
||||
return self.w / 2
|
||||
|
||||
@property
|
||||
def h_without_top_bar(self):
|
||||
"""img_height -= top_bar_height"""
|
||||
return self.h - self.sizes.TOP_BAR_HEIGHT
|
||||
|
||||
@property
|
||||
def h_without_top_bar_mid(self):
|
||||
return self.sizes.TOP_BAR_HEIGHT + self.h_without_top_bar / 2
|
||||
|
||||
@property
|
||||
def pfl_top(self):
|
||||
return self.h_without_top_bar_mid + self.sizes.PFL_TOP_FROM_VMID
|
||||
|
||||
@property
|
||||
def pfl_left(self):
|
||||
return self.hmid + self.sizes.PFL_LEFT_FROM_HMID
|
||||
|
||||
@property
|
||||
def pure_rect(self):
|
||||
return self.construct_int_xywh_rect(
|
||||
x=self.pfl_left,
|
||||
y=self.pfl_top,
|
||||
w=self.sizes.PFL_WIDTH,
|
||||
h=self.sizes.PFL_FONT_PX,
|
||||
)
|
||||
|
||||
@property
|
||||
def pure(self):
|
||||
return crop_xywh(self.img, self.pure_rect)
|
||||
|
||||
@property
|
||||
def far_rect(self):
|
||||
return self.construct_int_xywh_rect(
|
||||
x=self.pfl_left,
|
||||
y=self.pfl_top + self.sizes.PFL_FONT_PX + self.sizes.PURE_FAR_GAP,
|
||||
w=self.sizes.PFL_WIDTH,
|
||||
h=self.sizes.PFL_FONT_PX,
|
||||
)
|
||||
|
||||
@property
|
||||
def far(self):
|
||||
return crop_xywh(self.img, self.far_rect)
|
||||
|
||||
@property
|
||||
def lost_rect(self):
|
||||
return self.construct_int_xywh_rect(
|
||||
x=self.pfl_left,
|
||||
y=(
|
||||
self.pfl_top
|
||||
+ self.sizes.PFL_FONT_PX * 2
|
||||
+ self.sizes.PURE_FAR_GAP
|
||||
+ self.sizes.FAR_LOST_GAP
|
||||
),
|
||||
w=self.sizes.PFL_WIDTH,
|
||||
h=self.sizes.PFL_FONT_PX,
|
||||
)
|
||||
|
||||
@property
|
||||
def lost(self):
|
||||
return crop_xywh(self.img, self.lost_rect)
|
||||
|
||||
@property
|
||||
def score_rect(self):
|
||||
return self.construct_int_xywh_rect(
|
||||
x=self.hmid - (self.sizes.SCORE_WIDTH / 2),
|
||||
y=(
|
||||
self.h_without_top_bar_mid
|
||||
+ self.sizes.SCORE_BOTTOM_FROM_VMID
|
||||
- self.sizes.SCORE_FONT_PX
|
||||
),
|
||||
w=self.sizes.SCORE_WIDTH,
|
||||
h=self.sizes.SCORE_FONT_PX,
|
||||
)
|
||||
|
||||
@property
|
||||
def score(self):
|
||||
return crop_xywh(self.img, self.score_rect)
|
||||
|
||||
@property
|
||||
def max_recall_rating_class_rect(self):
|
||||
x = (
|
||||
self.hmid
|
||||
+ self.sizes.JACKET_RIGHT_FROM_HOR_MID
|
||||
- self.sizes.JACKET_WIDTH
|
||||
- 25 * self.sizes.factor
|
||||
)
|
||||
return self.construct_int_xywh_rect(
|
||||
x=x,
|
||||
y=(
|
||||
self.h_without_top_bar_mid
|
||||
- self.sizes.SCORE_PANEL[1] / 2
|
||||
- self.sizes.MR_RT_HEIGHT
|
||||
),
|
||||
w=self.sizes.MR_RT_WIDTH,
|
||||
h=self.sizes.MR_RT_HEIGHT,
|
||||
)
|
||||
|
||||
@property
|
||||
def max_recall_rating_class(self):
|
||||
return crop_xywh(self.img, self.max_recall_rating_class_rect)
|
||||
|
||||
@property
|
||||
def title_rect(self):
|
||||
return self.construct_int_xywh_rect(
|
||||
x=0,
|
||||
y=self.h_without_top_bar_mid
|
||||
+ self.sizes.TITLE_BOTTOM_FROM_VMID
|
||||
- self.sizes.TITLE_FONT_PX,
|
||||
w=self.hmid + self.sizes.TITLE_WIDTH_RIGHT,
|
||||
h=self.sizes.TITLE_FONT_PX,
|
||||
)
|
||||
|
||||
@property
|
||||
def title(self):
|
||||
return crop_xywh(self.img, self.title_rect)
|
||||
|
||||
@property
|
||||
def jacket_rect(self):
|
||||
return self.construct_int_xywh_rect(
|
||||
x=self.hmid
|
||||
+ self.sizes.JACKET_RIGHT_FROM_HOR_MID
|
||||
- self.sizes.JACKET_WIDTH,
|
||||
y=self.h_without_top_bar_mid - self.sizes.SCORE_PANEL[1] / 2,
|
||||
w=self.sizes.JACKET_WIDTH,
|
||||
h=self.sizes.JACKET_WIDTH,
|
||||
)
|
||||
|
||||
@property
|
||||
def jacket(self):
|
||||
return crop_xywh(self.img, self.jacket_rect)
|
||||
|
||||
|
||||
class DeviceV2AutoRois(DeviceV2Rois):
|
||||
@staticmethod
|
||||
def get_factor(width: int, height: int):
|
||||
ratio = width / height
|
||||
return ((width / 16) * 9) / 720 if ratio < (16 / 9) else height / 720
|
||||
|
||||
def __init__(self, img: Mat):
|
||||
factor = self.get_factor(img.shape[1], img.shape[0])
|
||||
self.sizes = SizesV1(factor)
|
||||
self.__img = None
|
||||
self.img = img
|
||||
|
||||
@property
|
||||
def img(self):
|
||||
return self.__img
|
||||
|
||||
@img.setter
|
||||
def img(self, img: Mat):
|
||||
self.__img = crop_black_edges(img)
|
@ -1,9 +0,0 @@
|
||||
from cv2 import MORPH_RECT, getStructuringElement
|
||||
|
||||
PFL_DENOISE_KERNEL = getStructuringElement(MORPH_RECT, [2, 2])
|
||||
PFL_ERODE_KERNEL = getStructuringElement(MORPH_RECT, [3, 3])
|
||||
PFL_CLOSE_HORIZONTAL_KERNEL = getStructuringElement(MORPH_RECT, [10, 1])
|
||||
|
||||
MAX_RECALL_DENOISE_KERNEL = getStructuringElement(MORPH_RECT, [3, 3])
|
||||
MAX_RECALL_ERODE_KERNEL = getStructuringElement(MORPH_RECT, [2, 2])
|
||||
MAX_RECALL_CLOSE_KERNEL = getStructuringElement(MORPH_RECT, [20, 1])
|
@ -1,254 +0,0 @@
|
||||
from typing import Tuple, Union
|
||||
|
||||
|
||||
def apply_factor(num: Union[int, float], factor: float):
|
||||
return num * factor
|
||||
|
||||
|
||||
class Sizes:
|
||||
def __init__(self, factor: float):
|
||||
raise NotImplementedError()
|
||||
|
||||
@property
|
||||
def TOP_BAR_HEIGHT(self):
|
||||
...
|
||||
|
||||
@property
|
||||
def SCORE_PANEL(self) -> Tuple[int, int]:
|
||||
...
|
||||
|
||||
@property
|
||||
def PFL_TOP_FROM_VMID(self):
|
||||
...
|
||||
|
||||
@property
|
||||
def PFL_LEFT_FROM_HMID(self):
|
||||
...
|
||||
|
||||
@property
|
||||
def PFL_WIDTH(self):
|
||||
...
|
||||
|
||||
@property
|
||||
def PFL_FONT_PX(self):
|
||||
...
|
||||
|
||||
@property
|
||||
def PURE_FAR_GAP(self):
|
||||
...
|
||||
|
||||
@property
|
||||
def FAR_LOST_GAP(self):
|
||||
...
|
||||
|
||||
@property
|
||||
def SCORE_BOTTOM_FROM_VMID(self):
|
||||
...
|
||||
|
||||
@property
|
||||
def SCORE_FONT_PX(self):
|
||||
...
|
||||
|
||||
@property
|
||||
def SCORE_WIDTH(self):
|
||||
...
|
||||
|
||||
@property
|
||||
def JACKET_RIGHT_FROM_HOR_MID(self):
|
||||
...
|
||||
|
||||
@property
|
||||
def JACKET_WIDTH(self):
|
||||
...
|
||||
|
||||
@property
|
||||
def MR_RT_RIGHT_FROM_HMID(self):
|
||||
...
|
||||
|
||||
@property
|
||||
def MR_RT_WIDTH(self):
|
||||
...
|
||||
|
||||
@property
|
||||
def MR_RT_HEIGHT(self):
|
||||
...
|
||||
|
||||
@property
|
||||
def TITLE_BOTTOM_FROM_VMID(self):
|
||||
...
|
||||
|
||||
@property
|
||||
def TITLE_FONT_PX(self):
|
||||
...
|
||||
|
||||
@property
|
||||
def TITLE_WIDTH_RIGHT(self):
|
||||
...
|
||||
|
||||
|
||||
class SizesV1(Sizes):
|
||||
def __init__(self, factor: float):
|
||||
self.factor = factor
|
||||
|
||||
def apply_factor(self, num):
|
||||
return apply_factor(num, self.factor)
|
||||
|
||||
@property
|
||||
def TOP_BAR_HEIGHT(self):
|
||||
return self.apply_factor(50)
|
||||
|
||||
@property
|
||||
def SCORE_PANEL(self) -> Tuple[int, int]:
|
||||
return tuple(self.apply_factor(num) for num in [485, 239])
|
||||
|
||||
@property
|
||||
def PFL_TOP_FROM_VMID(self):
|
||||
return self.apply_factor(135)
|
||||
|
||||
@property
|
||||
def PFL_LEFT_FROM_HMID(self):
|
||||
return self.apply_factor(5)
|
||||
|
||||
@property
|
||||
def PFL_WIDTH(self):
|
||||
return self.apply_factor(76)
|
||||
|
||||
@property
|
||||
def PFL_FONT_PX(self):
|
||||
return self.apply_factor(26)
|
||||
|
||||
@property
|
||||
def PURE_FAR_GAP(self):
|
||||
return self.apply_factor(12)
|
||||
|
||||
@property
|
||||
def FAR_LOST_GAP(self):
|
||||
return self.apply_factor(10)
|
||||
|
||||
@property
|
||||
def SCORE_BOTTOM_FROM_VMID(self):
|
||||
return self.apply_factor(-50)
|
||||
|
||||
@property
|
||||
def SCORE_FONT_PX(self):
|
||||
return self.apply_factor(45)
|
||||
|
||||
@property
|
||||
def SCORE_WIDTH(self):
|
||||
return self.apply_factor(280)
|
||||
|
||||
@property
|
||||
def JACKET_RIGHT_FROM_HOR_MID(self):
|
||||
return self.apply_factor(-235)
|
||||
|
||||
@property
|
||||
def JACKET_WIDTH(self):
|
||||
return self.apply_factor(375)
|
||||
|
||||
@property
|
||||
def MR_RT_RIGHT_FROM_HMID(self):
|
||||
return self.apply_factor(-300)
|
||||
|
||||
@property
|
||||
def MR_RT_WIDTH(self):
|
||||
return self.apply_factor(275)
|
||||
|
||||
@property
|
||||
def MR_RT_HEIGHT(self):
|
||||
return self.apply_factor(75)
|
||||
|
||||
@property
|
||||
def TITLE_BOTTOM_FROM_VMID(self):
|
||||
return self.apply_factor(-265)
|
||||
|
||||
@property
|
||||
def TITLE_FONT_PX(self):
|
||||
return self.apply_factor(40)
|
||||
|
||||
@property
|
||||
def TITLE_WIDTH_RIGHT(self):
|
||||
return self.apply_factor(275)
|
||||
|
||||
|
||||
class SizesV2(Sizes):
|
||||
def __init__(self, factor: float):
|
||||
self.factor = factor
|
||||
|
||||
def apply_factor(self, num):
|
||||
return apply_factor(num, self.factor)
|
||||
|
||||
@property
|
||||
def TOP_BAR_HEIGHT(self):
|
||||
return self.apply_factor(50)
|
||||
|
||||
@property
|
||||
def SCORE_PANEL(self) -> Tuple[int, int]:
|
||||
return tuple(self.apply_factor(num) for num in [447, 233])
|
||||
|
||||
@property
|
||||
def PFL_TOP_FROM_VMID(self):
|
||||
return self.apply_factor(142)
|
||||
|
||||
@property
|
||||
def PFL_LEFT_FROM_HMID(self):
|
||||
return self.apply_factor(10)
|
||||
|
||||
@property
|
||||
def PFL_WIDTH(self):
|
||||
return self.apply_factor(60)
|
||||
|
||||
@property
|
||||
def PFL_FONT_PX(self):
|
||||
return self.apply_factor(16)
|
||||
|
||||
@property
|
||||
def PURE_FAR_GAP(self):
|
||||
return self.apply_factor(20)
|
||||
|
||||
@property
|
||||
def FAR_LOST_GAP(self):
|
||||
return self.apply_factor(23)
|
||||
|
||||
@property
|
||||
def SCORE_BOTTOM_FROM_VMID(self):
|
||||
return self.apply_factor(-50)
|
||||
|
||||
@property
|
||||
def SCORE_FONT_PX(self):
|
||||
return self.apply_factor(45)
|
||||
|
||||
@property
|
||||
def SCORE_WIDTH(self):
|
||||
return self.apply_factor(280)
|
||||
|
||||
@property
|
||||
def JACKET_RIGHT_FROM_HOR_MID(self):
|
||||
return self.apply_factor(-235)
|
||||
|
||||
@property
|
||||
def JACKET_WIDTH(self):
|
||||
return self.apply_factor(375)
|
||||
|
||||
@property
|
||||
def MR_RT_RIGHT_FROM_HMID(self):
|
||||
return self.apply_factor(-330)
|
||||
|
||||
@property
|
||||
def MR_RT_WIDTH(self):
|
||||
return self.apply_factor(330)
|
||||
|
||||
@property
|
||||
def MR_RT_HEIGHT(self):
|
||||
return self.apply_factor(75)
|
||||
|
||||
@property
|
||||
def TITLE_BOTTOM_FROM_VMID(self):
|
||||
return self.apply_factor(-265)
|
||||
|
||||
@property
|
||||
def TITLE_FONT_PX(self):
|
||||
return self.apply_factor(40)
|
||||
|
||||
@property
|
||||
def TITLE_WIDTH_RIGHT(self):
|
||||
return self.apply_factor(275)
|
Loading…
x
Reference in New Issue
Block a user