mirror of
https://github.com/283375/arcaea-offline-ocr.git
synced 2025-07-05 06:16:26 +00:00
wip: Chieri V4 B30 ocr
This commit is contained in:
221
src/arcaea_offline_ocr/b30/chieri/v4/ocr.py
Normal file
221
src/arcaea_offline_ocr/b30/chieri/v4/ocr.py
Normal file
@ -0,0 +1,221 @@
|
||||
from datetime import datetime
|
||||
from typing import TYPE_CHECKING, List, Optional, Tuple, Union
|
||||
|
||||
import attrs
|
||||
import cv2
|
||||
import numpy as np
|
||||
|
||||
from ....crop import crop_xywh
|
||||
from ....ocr import preprocess_hog
|
||||
from ....types import Mat, XYWHRect, cv2_ml_KNearest
|
||||
from ....utils import construct_int_xywh_rect
|
||||
from .colors import *
|
||||
from .rois import ChieriBotV4Rois
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from paddleocr import PaddleOCR
|
||||
|
||||
|
||||
@attrs.define
|
||||
class ChieriBotV4OcrResultItem:
|
||||
rating_class: int
|
||||
title: str
|
||||
score: int
|
||||
pure: int
|
||||
far: int
|
||||
lost: int
|
||||
date: Union[datetime, str]
|
||||
|
||||
|
||||
class ChieriBotV4Ocr:
|
||||
def __init__(
|
||||
self,
|
||||
paddle_ocr: "PaddleOCR",
|
||||
knn_digits_model: cv2_ml_KNearest,
|
||||
factor: Optional[float] = 1.0,
|
||||
):
|
||||
self.__paddle_ocr = paddle_ocr
|
||||
self.__knn_digits_model = knn_digits_model
|
||||
self.__rois = ChieriBotV4Rois(factor)
|
||||
|
||||
@property
|
||||
def paddle_ocr(self):
|
||||
return self.__paddle_ocr
|
||||
|
||||
@paddle_ocr.setter
|
||||
def paddle_ocr(self, paddle_ocr: "PaddleOCR"):
|
||||
self.__paddle_ocr = paddle_ocr
|
||||
|
||||
@property
|
||||
def knn_digits_model(self):
|
||||
return self.__knn_digits_model
|
||||
|
||||
@knn_digits_model.setter
|
||||
def knn_digits_model(self, knn_digits_model: Mat):
|
||||
self.__knn_digits_model = knn_digits_model
|
||||
|
||||
@property
|
||||
def rois(self):
|
||||
return self.__rois
|
||||
|
||||
@property
|
||||
def factor(self):
|
||||
return self.__rois.factor
|
||||
|
||||
@factor.setter
|
||||
def factor(self, factor: float):
|
||||
self.__rois.factor = factor
|
||||
|
||||
def ocr_component_rating_class(self, component_bgr: Mat) -> int:
|
||||
rating_class_rect = construct_int_xywh_rect(
|
||||
self.rois.component_rois.rating_class_rect
|
||||
)
|
||||
rating_class_roi = crop_xywh(component_bgr, rating_class_rect)
|
||||
rating_class_roi = cv2.cvtColor(rating_class_roi, cv2.COLOR_BGR2HSV)
|
||||
rating_class_masks = [
|
||||
cv2.inRange(rating_class_roi, PRS_MIN_HSV, PRS_MAX_HSV),
|
||||
cv2.inRange(rating_class_roi, FTR_MIN_HSV, FTR_MAX_HSV),
|
||||
cv2.inRange(rating_class_roi, BYD_MIN_HSV, BYD_MAX_HSV),
|
||||
] # prs, ftr, byd only
|
||||
rating_class_results = [np.count_nonzero(m) for m in rating_class_masks]
|
||||
if max(rating_class_results) < 70:
|
||||
return 0
|
||||
else:
|
||||
return max(enumerate(rating_class_results), key=lambda i: i[1])[0] + 1
|
||||
|
||||
def ocr_component_title(self, component_bgr: Mat) -> str:
|
||||
# sourcery skip: inline-immediately-returned-variable
|
||||
title_rect = construct_int_xywh_rect(self.rois.component_rois.title_rect)
|
||||
title_roi = crop_xywh(component_bgr, title_rect)
|
||||
ocr_result = self.paddle_ocr.ocr(title_roi, cls=False)
|
||||
title = ocr_result[0][-1][1][0] if ocr_result and ocr_result[0] else ""
|
||||
return title
|
||||
|
||||
def ocr_component_score(self, component_bgr: Mat) -> int:
|
||||
# sourcery skip: inline-immediately-returned-variable
|
||||
score_rect = construct_int_xywh_rect(self.rois.component_rois.score_rect)
|
||||
score_roi = cv2.cvtColor(
|
||||
crop_xywh(component_bgr, score_rect), cv2.COLOR_BGR2GRAY
|
||||
)
|
||||
_, score_roi = cv2.threshold(
|
||||
score_roi, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU
|
||||
)
|
||||
score_str = self.paddle_ocr.ocr(score_roi, cls=False)[0][-1][1][0]
|
||||
score = int(score_str.replace("'", "").replace(" ", ""))
|
||||
return score
|
||||
|
||||
def find_pfl_rects(self, component_pfl_processed: Mat) -> List[List[int]]:
|
||||
# sourcery skip: inline-immediately-returned-variable
|
||||
pfl_roi_find = cv2.morphologyEx(
|
||||
component_pfl_processed,
|
||||
cv2.MORPH_CLOSE,
|
||||
cv2.getStructuringElement(cv2.MORPH_RECT, [10, 1]),
|
||||
)
|
||||
pfl_contours, _ = cv2.findContours(
|
||||
pfl_roi_find, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE
|
||||
)
|
||||
pfl_rects = [cv2.boundingRect(c) for c in pfl_contours]
|
||||
pfl_rects = [
|
||||
r for r in pfl_rects if r[3] > component_pfl_processed.shape[0] * 0.1
|
||||
]
|
||||
pfl_rects = sorted(pfl_rects, key=lambda r: r[1])
|
||||
pfl_rects_adjusted = [
|
||||
(
|
||||
max(rect[0] - 2, 0),
|
||||
rect[1],
|
||||
min(rect[2] + 2, component_pfl_processed.shape[1]),
|
||||
rect[3],
|
||||
)
|
||||
for rect in pfl_rects
|
||||
]
|
||||
return pfl_rects_adjusted
|
||||
|
||||
def preprocess_component_pfl(self, component_bgr: Mat) -> Mat:
|
||||
pfl_rect = construct_int_xywh_rect(self.rois.component_rois.pfl_rect)
|
||||
pfl_roi = crop_xywh(component_bgr, pfl_rect)
|
||||
pfl_roi_hsv = cv2.cvtColor(pfl_roi, cv2.COLOR_BGR2HSV)
|
||||
|
||||
# fill the pfl bg with background color
|
||||
bg_point = [round(i) for i in self.rois.component_rois.bg_point]
|
||||
bg_color = component_bgr[bg_point[1]][bg_point[0]]
|
||||
pure_bg_mask = cv2.inRange(pfl_roi_hsv, PURE_BG_MIN_HSV, PURE_BG_MAX_HSV)
|
||||
far_bg_mask = cv2.inRange(pfl_roi_hsv, FAR_BG_MIN_HSV, FAR_BG_MAX_HSV)
|
||||
lost_bg_mask = cv2.inRange(pfl_roi_hsv, LOST_BG_MIN_HSV, LOST_BG_MAX_HSV)
|
||||
pfl_roi[np.where(pure_bg_mask != 0)] = bg_color
|
||||
pfl_roi[np.where(far_bg_mask != 0)] = bg_color
|
||||
pfl_roi[np.where(lost_bg_mask != 0)] = bg_color
|
||||
|
||||
# threshold
|
||||
pfl_roi = cv2.cvtColor(pfl_roi, cv2.COLOR_BGR2GRAY)
|
||||
# get threshold of blurred image, try ignoring the lines of bg bar
|
||||
pfl_roi_blurred = cv2.GaussianBlur(pfl_roi, (5, 5), 0)
|
||||
# pfl_roi_blurred = cv2.medianBlur(pfl_roi, 3)
|
||||
_, pfl_roi_blurred_threshold = cv2.threshold(
|
||||
pfl_roi_blurred, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU
|
||||
)
|
||||
# and a threshold of the original roi
|
||||
_, pfl_roi_threshold = cv2.threshold(
|
||||
pfl_roi, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU
|
||||
)
|
||||
# turn thresholds into black background
|
||||
if pfl_roi_blurred_threshold[2][2] == 255:
|
||||
pfl_roi_blurred_threshold = 255 - pfl_roi_blurred_threshold
|
||||
if pfl_roi_threshold[2][2] == 255:
|
||||
pfl_roi_threshold = 255 - pfl_roi_threshold
|
||||
# return a bitwise_and result
|
||||
result = cv2.bitwise_and(pfl_roi_blurred_threshold, pfl_roi_threshold)
|
||||
result_eroded = cv2.erode(
|
||||
result, cv2.getStructuringElement(cv2.MORPH_CROSS, (2, 2))
|
||||
)
|
||||
return result_eroded if len(self.find_pfl_rects(result_eroded)) == 3 else result
|
||||
|
||||
def ocr_component_pfl(self, component_bgr: Mat) -> Tuple[int, int, int]:
|
||||
try:
|
||||
pfl_roi = self.preprocess_component_pfl(component_bgr)
|
||||
pfl_rects = self.find_pfl_rects(pfl_roi)
|
||||
pure_far_lost = []
|
||||
for pfl_roi_rect in pfl_rects:
|
||||
roi = crop_xywh(pfl_roi, pfl_roi_rect)
|
||||
digit_contours, _ = cv2.findContours(
|
||||
roi, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE
|
||||
)
|
||||
digit_rects = sorted(
|
||||
[cv2.boundingRect(c) for c in digit_contours],
|
||||
key=lambda r: r[0],
|
||||
)
|
||||
digits = []
|
||||
for digit_rect in digit_rects:
|
||||
digit = crop_xywh(roi, digit_rect)
|
||||
digit = cv2.resize(digit, (20, 20))
|
||||
digits.append(digit)
|
||||
samples = preprocess_hog(digits)
|
||||
|
||||
_, results, _, _ = self.knn_digits_model.findNearest(samples, 4)
|
||||
results = [str(int(i)) for i in results.ravel()]
|
||||
pure_far_lost.append(int("".join(results)))
|
||||
return tuple(pure_far_lost)
|
||||
except Exception:
|
||||
return (-1, -1, -1)
|
||||
|
||||
def ocr_component(self, component_bgr: Mat) -> ChieriBotV4OcrResultItem:
|
||||
component_blur = cv2.GaussianBlur(component_bgr, (5, 5), 0)
|
||||
rating_class = self.ocr_component_rating_class(component_blur)
|
||||
title = self.ocr_component_title(component_blur)
|
||||
score = self.ocr_component_score(component_blur)
|
||||
pure, far, lost = self.ocr_component_pfl(component_bgr)
|
||||
return ChieriBotV4OcrResultItem(
|
||||
rating_class=rating_class,
|
||||
title=title,
|
||||
score=score,
|
||||
pure=pure,
|
||||
far=far,
|
||||
lost=lost,
|
||||
date="",
|
||||
)
|
||||
|
||||
def ocr(self, img_bgr: Mat) -> List[ChieriBotV4OcrResultItem]:
|
||||
self.factor = img_bgr.shape[0] / 4400
|
||||
return [
|
||||
self.ocr_component(component_bgr)
|
||||
for component_bgr in self.rois.components(img_bgr)
|
||||
]
|
Reference in New Issue
Block a user