mirror of
https://github.com/283375/arcaea-offline-ocr.git
synced 2025-04-11 09:30:17 +00:00
feat: split jacket & partner lookup in phash database
This commit is contained in:
parent
1aa71685ce
commit
d13076c667
@ -1,11 +1,12 @@
|
||||
import sqlite3
|
||||
from typing import List, Union
|
||||
|
||||
import cv2
|
||||
import numpy as np
|
||||
|
||||
|
||||
def phash_opencv(img_gray, hash_size=8, highfreq_factor=4):
|
||||
# type: (cv2.Mat | np.ndarray, int, int) -> np.ndarray
|
||||
# type: (Union[cv2.Mat, np.ndarray], int, int) -> np.ndarray
|
||||
"""
|
||||
Perceptual Hash computation.
|
||||
|
||||
@ -53,28 +54,35 @@ class ImagePHashDatabase:
|
||||
).fetchone()[0]
|
||||
)
|
||||
|
||||
# self.conn.create_function(
|
||||
# "HAMMING_DISTANCE",
|
||||
# 2,
|
||||
# hamming_distance_sql_function,
|
||||
# deterministic=True,
|
||||
# )
|
||||
|
||||
self.ids = [i[0] for i in conn.execute("SELECT id FROM hashes").fetchall()]
|
||||
self.ids: List[str] = [
|
||||
i[0] for i in conn.execute("SELECT id FROM hashes").fetchall()
|
||||
]
|
||||
self.hashes_byte = [
|
||||
i[0] for i in conn.execute("SELECT hash FROM hashes").fetchall()
|
||||
]
|
||||
self.hashes = [np.frombuffer(hb, bool) for hb in self.hashes_byte]
|
||||
self.hashes_slice_size = round(len(self.hashes_byte[0]) * 0.25)
|
||||
self.hashes_head = [h[: self.hashes_slice_size] for h in self.hashes]
|
||||
self.hashes_tail = [h[-self.hashes_slice_size :] for h in self.hashes]
|
||||
|
||||
self.jacket_ids: List[str] = []
|
||||
self.jacket_hashes = []
|
||||
self.partner_ids: List[str] = []
|
||||
self.partner_hashes = []
|
||||
|
||||
for id, hash in zip(self.ids, self.hashes):
|
||||
id_splitted = id.split("||")
|
||||
if len(id_splitted) > 1 and id_splitted[0] == "partner":
|
||||
self.partner_ids.append(id)
|
||||
self.partner_hashes.append(hash)
|
||||
else:
|
||||
self.jacket_ids.append(id)
|
||||
self.jacket_hashes.append(hash)
|
||||
|
||||
def calculate_phash(self, img_gray: cv2.Mat):
|
||||
return phash_opencv(
|
||||
img_gray, hash_size=self.hash_size, highfreq_factor=self.highfreq_factor
|
||||
)
|
||||
|
||||
def lookup_hash(self, image_hash: np.ndarray, *, limit: int = 5):
|
||||
image_hash = image_hash.flatten()
|
||||
# image_hash_head = image_hash[: self.hashes_slice_size]
|
||||
# image_hash_tail = image_hash[-self.hashes_slice_size :]
|
||||
# head_xor_results = [image_hash_head ^ h for h in self.hashes]
|
||||
# tail_xor_results = [image_hash_head ^ h for h in self.hashes]
|
||||
xor_results = [
|
||||
(id, np.count_nonzero(image_hash ^ h))
|
||||
for id, h in zip(self.ids, self.hashes)
|
||||
@ -82,7 +90,27 @@ class ImagePHashDatabase:
|
||||
return sorted(xor_results, key=lambda r: r[1])[:limit]
|
||||
|
||||
def lookup_image(self, img_gray: cv2.Mat):
|
||||
image_hash = phash_opencv(
|
||||
img_gray, hash_size=self.hash_size, highfreq_factor=self.highfreq_factor
|
||||
)
|
||||
image_hash = self.calculate_phash(img_gray)
|
||||
return self.lookup_hash(image_hash)[0]
|
||||
|
||||
def lookup_jackets(self, img_gray: cv2.Mat, *, limit: int = 5):
|
||||
image_hash = self.calculate_phash(img_gray).flatten()
|
||||
xor_results = [
|
||||
(id, np.count_nonzero(image_hash ^ h))
|
||||
for id, h in zip(self.jacket_ids, self.jacket_hashes)
|
||||
]
|
||||
return sorted(xor_results, key=lambda r: r[1])[:limit]
|
||||
|
||||
def lookup_jacket(self, img_gray: cv2.Mat):
|
||||
return self.lookup_jackets(img_gray)[0]
|
||||
|
||||
def lookup_partners(self, img_gray: cv2.Mat, *, limit: int = 5):
|
||||
image_hash = self.calculate_phash(img_gray).flatten()
|
||||
xor_results = [
|
||||
(id, np.count_nonzero(image_hash ^ h))
|
||||
for id, h in zip(self.partner_ids, self.partner_hashes)
|
||||
]
|
||||
return sorted(xor_results, key=lambda r: r[1])[:limit]
|
||||
|
||||
def lookup_partner(self, img_gray: cv2.Mat):
|
||||
return self.lookup_partners(img_gray)[0]
|
||||
|
Loading…
x
Reference in New Issue
Block a user