14 Commits

Author SHA1 Message Date
8cc407b2bc chore: update README 2025-06-27 02:06:24 +08:00
673e45834d chore: apply ruff rules 2025-06-27 01:38:54 +08:00
57f430770e chore: update dependencies 2025-06-27 01:06:24 +08:00
d7ad85bdb0 ci: new build & publish workflow 2025-06-26 01:11:25 +08:00
0b53682398 ci: fix tag condition
- ok i didnt expect github actions does not support regex wtf
2025-06-26 00:15:02 +08:00
b117346b46 chore: setuptools-scm integration 2025-06-26 00:07:08 +08:00
ad0a33daad ci: tag regex 2025-06-25 23:43:46 +08:00
c08a1332a7 chore!: removing unused code 2025-06-25 23:37:21 +08:00
0055d9e8da refactor!: device scenario
- Correct abstract class annotations
2025-06-25 23:35:38 +08:00
06156db9c2 refactor!: chieri v4 b30 scenario
- Remove useless `.utils` code
2025-06-25 23:27:15 +08:00
c65798a02d feat: XYWHRect __mul__ 2025-06-25 23:19:52 +08:00
f11dc6e38f refactor: scenario base 2025-06-25 23:11:45 +08:00
2b18906935 refactor!: image hash database provider 2025-06-22 01:28:59 +08:00
abfd37dbef refactor!: OCR text result provider 2025-06-22 00:32:31 +08:00
54 changed files with 1270 additions and 972 deletions

View File

@ -1,48 +0,0 @@
name: "Build and draft a release"
on:
workflow_dispatch:
push:
tags:
- "v[0-9]+.[0-9]+.[0-9]+"
permissions:
contents: write
discussions: write
jobs:
build-and-draft-release:
runs-on: ubuntu-latest
steps:
- name: Checkout
uses: actions/checkout@v4
with:
fetch-depth: 0
- name: Set up Python environment
uses: actions/setup-python@v5
with:
python-version: "3.x"
- name: Build package
run: |
pip install build
python -m build
- name: Remove `v` in tag name
uses: mad9000/actions-find-and-replace-string@5
id: tagNameReplaced
with:
source: ${{ github.ref_name }}
find: "v"
replace: ""
- name: Draft a release
uses: softprops/action-gh-release@v2
with:
discussion_category_name: New releases
draft: true
generate_release_notes: true
files: |
dist/arcaea_offline_ocr-${{ steps.tagNameReplaced.outputs.value }}*.whl
dist/arcaea-offline-ocr-${{ steps.tagNameReplaced.outputs.value }}.tar.gz

103
.github/workflows/build-and-publish.yml vendored Normal file
View File

@ -0,0 +1,103 @@
name: Build, Release, Publish
on:
workflow_dispatch:
push:
tags:
- "*.*.*"
jobs:
build:
name: Build package
runs-on: ubuntu-latest
steps:
- name: Checkout
uses: actions/checkout@v4
with:
fetch-depth: 0
- name: Set up Python environment
uses: actions/setup-python@v5
with:
python-version: "3.x"
- name: Build package
run: |
pip install build
python -m build
- name: Store the distribution files
uses: actions/upload-artifact@v4
with:
name: python-package-distributions
path: dist/
draft-release:
name: Draft a release
runs-on: ubuntu-latest
needs:
- build
permissions:
contents: write
discussions: write
steps:
- name: Download the distribution files
uses: actions/download-artifact@v4
with:
name: python-package-distributions
path: dist/
- name: Draft a release
uses: softprops/action-gh-release@v2
with:
discussion_category_name: New releases
draft: true
generate_release_notes: true
files: |
dist/*
publish-to-pypi:
name: Publish distribution to PyPI
runs-on: ubuntu-latest
if: startsWith(github.ref, 'refs/tags/') # only publish to PyPI on tag pushes
needs:
- build
environment:
name: pypi
url: https://pypi.org/p/arcaea-offline-ocr
permissions:
id-token: write
steps:
- name: Download the distribution files
uses: actions/download-artifact@v4
with:
name: python-package-distributions
path: dist/
- name: Publish distribution to PyPI
uses: pypa/gh-action-pypi-publish@release/v1
publish-to-testpypi:
name: Publish distribution to TestPyPI
runs-on: ubuntu-latest
needs:
- build
environment:
name: testpypi
url: https://test.pypi.org/p/arcaea-offline-ocr
permissions:
id-token: write
steps:
- name: Download the distribution files
uses: actions/download-artifact@v4
with:
name: python-package-distributions
path: dist/
- name: Publish distribution to TestPyPI
uses: pypa/gh-action-pypi-publish@release/v1
with:
repository-url: https://test.pypi.org/legacy/

156
README.md
View File

@ -1,32 +1,152 @@
# Arcaea Offline OCR
[![Ruff](https://img.shields.io/endpoint?url=https://raw.githubusercontent.com/astral-sh/ruff/main/assets/badge/v2.json)](https://github.com/astral-sh/ruff)
## Example
> Results from `arcaea_offline_ocr 0.1.0a2`
### Build an image hash database (ihdb)
```py
import sqlite3
from pathlib import Path
import cv2
from arcaea_offline_ocr.device.ocr import DeviceOcr
from arcaea_offline_ocr.device.rois.definition import DeviceRoisAutoT2
from arcaea_offline_ocr.device.rois.extractor import DeviceRoisExtractor
from arcaea_offline_ocr.device.rois.masker import DeviceRoisMaskerAutoT2
from arcaea_offline_ocr.phash_db import ImagePhashDatabase
img_path = "/path/to/opencv/supported/image/formats.jpg"
img = cv2.imread(img_path, cv2.IMREAD_COLOR)
from arcaea_offline_ocr.builders.ihdb import (
ImageHashDatabaseBuildTask,
ImageHashesDatabaseBuilder,
)
from arcaea_offline_ocr.providers import ImageCategory, ImageHashDatabaseIdProvider
from arcaea_offline_ocr.scenarios.device import DeviceScenario
rois = DeviceRoisAutoT2(img.shape[1], img.shape[0])
extractor = DeviceRoisExtractor(img, rois)
masker = DeviceRoisMaskerAutoT2()
def build():
def _read_partner_icon(image_path: str):
return DeviceScenario.preprocess_char_icon(
cv2.cvtColor(cv2.imread(image_path, cv2.IMREAD_COLOR), cv2.COLOR_BGR2GRAY),
)
knn_model = cv2.ml.KNearest.load("/path/to/trained/knn/model.dat")
phash_db = ImagePhashDatabase("/path/to/image/phash/database.db")
builder = ImageHashesDatabaseBuilder()
tasks = [
ImageHashDatabaseBuildTask(
image_path=str(file),
image_id=file.stem,
category=ImageCategory.JACKET,
)
for file in Path("/path/to/some/jackets").glob("*.jpg")
]
ocr = DeviceOcr(extractor, masker, knn_model, phash_db)
print(ocr.ocr())
tasks.extend(
[
ImageHashDatabaseBuildTask(
image_path=str(file),
image_id=file.stem,
category=ImageCategory.PARTNER_ICON,
imread_function=_read_partner_icon,
)
for file in Path("/path/to/some/partner_icons").glob("*.png")
],
)
with sqlite3.connect("/path/to/ihdb-X.Y.Z.db") as conn:
builder.build(conn, tasks)
```
```sh
$ python example.py
DeviceOcrResult(rating_class=2, pure=1135, far=11, lost=0, score=9953016, max_recall=1146, song_id='ringedgenesis', song_id_possibility=0.953125, clear_status=2, partner_id='45', partner_id_possibility=0.8046875)
### Device OCR
```py
import json
import sqlite3
from dataclasses import asdict
import cv2
from arcaea_offline_ocr.providers import (
ImageHashDatabaseIdProvider,
OcrKNearestTextProvider,
)
from arcaea_offline_ocr.scenarios.device import (
DeviceRoisAutoT2,
DeviceRoisExtractor,
DeviceRoisMaskerAutoT2,
DeviceScenario,
)
with sqlite3.connect("/path/to/ihdb-X.Y.Z.db") as conn:
img = cv2.imread("/path/to/your/screenshot.jpg")
h, w = img.shape[:2]
r = DeviceRoisAutoT2(w, h)
m = DeviceRoisMaskerAutoT2()
e = DeviceRoisExtractor(img, r)
scenario = DeviceScenario(
extractor=e,
masker=m,
knn_provider=OcrKNearestTextProvider(
cv2.ml.KNearest.load("/path/to/knn_model.dat"),
),
image_id_provider=ImageHashDatabaseIdProvider(conn),
)
result = scenario.result()
with open("result.jsonc", "w", encoding="utf-8") as jf:
json.dump(asdict(result), jf, indent=2, ensure_ascii=False)
```
```jsonc
// result.json
{
"song_id": "vector",
"rating_class": 1,
"score": 9990996,
"song_id_results": [
{
"image_id": "vector",
"category": 0,
"confidence": 1.0,
"image_hash_type": 0
},
{
"image_id": "clotho",
"category": 0,
"confidence": 0.71875,
"image_hash_type": 0
}
// 28 more results omitted…
],
"partner_id_results": [
{
"image_id": "23",
"category": 1,
"confidence": 0.90625,
"image_hash_type": 0
},
{
"image_id": "45",
"category": 1,
"confidence": 0.8828125,
"image_hash_type": 0
}
// 28 more results omitted…
],
"pure": 1000,
"pure_inaccurate": null,
"pure_early": null,
"pure_late": null,
"far": 2,
"far_inaccurate": null,
"far_early": null,
"far_late": null,
"lost": 0,
"played_at": null,
"max_recall": 1002,
"clear_status": 2,
"clear_type": null,
"modifier": null
}
```
## License
@ -48,4 +168,4 @@ along with this program. If not, see <https://www.gnu.org/licenses/>.
## Credits
[283375/image-phash-database](https://github.com/283375/image-phash-database)
- [JohannesBuchner/imagehash](https://github.com/JohannesBuchner/imagehash): `arcaea_offline_ocr.core.hashers` implementations reference

View File

@ -1,38 +1,33 @@
[build-system]
requires = ["setuptools>=61.0"]
requires = ["setuptools>=64", "setuptools-scm>=8"]
build-backend = "setuptools.build_meta"
[project]
dynamic = ["version"]
name = "arcaea-offline-ocr"
version = "0.0.99"
authors = [{ name = "283375", email = "log_283375@163.com" }]
description = "Extract your Arcaea play result from screenshot."
readme = "README.md"
requires-python = ">=3.8"
dependencies = ["attrs==23.1.0", "numpy==1.26.1", "opencv-python==4.8.1.78"]
dependencies = ["numpy~=2.3", "opencv-python~=4.11"]
classifiers = [
"Development Status :: 3 - Alpha",
"Programming Language :: Python :: 3",
]
[project.optional-dependencies]
dev = ["ruff", "pre-commit"]
[project.urls]
"Homepage" = "https://github.com/ArcaeaOffline/core-ocr"
"Bug Tracker" = "https://github.com/ArcaeaOffline/core-ocr/issues"
[tool.isort]
profile = "black"
src_paths = ["src/arcaea_offline_ocr"]
[tool.setuptools_scm]
[tool.pyright]
ignore = ["**/__debug*.*"]
[tool.pylint.main]
# extension-pkg-allow-list = ["cv2"]
generated-members = ["cv2.*"]
[tool.pylint.logging]
disable = [
"missing-module-docstring",
"missing-class-docstring",
"missing-function-docstring"
]
[tool.ruff.lint]
select = ["ALL"]
ignore = ["ANN", "D", "ERA", "PLR"]

View File

@ -1,3 +1,2 @@
black==23.7.0
isort==5.12.0
pre-commit==3.3.3
ruff
pre-commit

View File

@ -1,4 +0,0 @@
from .crop import *
from .device import *
from .ocr import *
from .utils import *

View File

@ -1,15 +0,0 @@
from dataclasses import dataclass
from datetime import datetime
from typing import Optional
@dataclass
class B30OcrResultItem:
rating_class: int
score: int
pure: Optional[int] = None
far: Optional[int] = None
lost: Optional[int] = None
date: Optional[datetime] = None
title: Optional[str] = None
song_id: Optional[str] = None

View File

@ -0,0 +1,6 @@
from .ihdb import ImageHashDatabaseBuildTask, ImageHashesDatabaseBuilder
__all__ = [
"ImageHashDatabaseBuildTask",
"ImageHashesDatabaseBuilder",
]

View File

@ -0,0 +1,115 @@
from __future__ import annotations
from dataclasses import dataclass
from datetime import datetime, timezone
from typing import TYPE_CHECKING, Callable
import cv2
from arcaea_offline_ocr.core import hashers
from arcaea_offline_ocr.providers.ihdb import (
PROP_KEY_BUILT_AT,
PROP_KEY_HASH_SIZE,
PROP_KEY_HIGH_FREQ_FACTOR,
ImageHashDatabaseIdProvider,
ImageHashType,
)
if TYPE_CHECKING:
from sqlite3 import Connection
from arcaea_offline_ocr.providers import ImageCategory
from arcaea_offline_ocr.types import Mat
def _default_imread_gray(image_path: str):
return cv2.cvtColor(cv2.imread(image_path, cv2.IMREAD_COLOR), cv2.COLOR_BGR2GRAY)
@dataclass
class ImageHashDatabaseBuildTask:
image_path: str
image_id: str
category: ImageCategory
imread_function: Callable[[str], Mat] = _default_imread_gray
@dataclass
class _ImageHash:
image_id: str
category: ImageCategory
image_hash_type: ImageHashType
hash: bytes
class ImageHashesDatabaseBuilder:
@staticmethod
def __insert_property(conn: Connection, key: str, value: str):
return conn.execute(
"INSERT INTO properties (key, value) VALUES (?, ?)",
(key, value),
)
@classmethod
def build(
cls,
conn: Connection,
tasks: list[ImageHashDatabaseBuildTask],
*,
hash_size: int = 16,
high_freq_factor: int = 4,
):
hashes: list[_ImageHash] = []
for task in tasks:
img_gray = task.imread_function(task.image_path)
for hash_type, hash_mat in [
(
ImageHashType.AVERAGE,
hashers.average(img_gray, hash_size),
),
(
ImageHashType.DCT,
hashers.dct(img_gray, hash_size, high_freq_factor),
),
(
ImageHashType.DIFFERENCE,
hashers.difference(img_gray, hash_size),
),
]:
hashes.append(
_ImageHash(
image_id=task.image_id,
image_hash_type=hash_type,
category=task.category,
hash=ImageHashDatabaseIdProvider.hash_mat_to_bytes(hash_mat),
),
)
conn.execute("CREATE TABLE properties (`key` VARCHAR, `value` VARCHAR)")
conn.execute(
"""CREATE TABLE hashes (
`id` VARCHAR,
`category` INTEGER,
`hash_type` INTEGER,
`hash` BLOB
)""",
)
now = datetime.now(tz=timezone.utc)
timestamp = int(now.timestamp() * 1000)
cls.__insert_property(conn, PROP_KEY_HASH_SIZE, str(hash_size))
cls.__insert_property(conn, PROP_KEY_HIGH_FREQ_FACTOR, str(high_freq_factor))
cls.__insert_property(conn, PROP_KEY_BUILT_AT, str(timestamp))
conn.executemany(
"""INSERT INTO hashes (`id`, `category`, `hash_type`, `hash`)
VALUES (?, ?, ?, ?)""",
[
(it.image_id, it.category.value, it.image_hash_type.value, it.hash)
for it in hashes
],
)
conn.commit()

View File

@ -23,7 +23,7 @@ def difference(img_gray: Mat, hash_size: int) -> Mat:
def dct(img_gray: Mat, hash_size: int = 16, high_freq_factor: int = 4) -> Mat:
# TODO: consistency?
# TODO: consistency? # noqa: FIX002, TD002, TD003
img_size_base = hash_size * high_freq_factor
img_size = (img_size_base, img_size_base)

View File

@ -1,29 +1,32 @@
from __future__ import annotations
import math
from typing import Tuple
from typing import TYPE_CHECKING
import cv2
import numpy as np
from .types import Mat
if TYPE_CHECKING:
from .types import Mat
__all__ = ["crop_xywh", "CropBlackEdges"]
__all__ = ["CropBlackEdges", "crop_xywh"]
def crop_xywh(mat: Mat, rect: Tuple[int, int, int, int]):
def crop_xywh(mat: Mat, rect: tuple[int, int, int, int]):
x, y, w, h = rect
return mat[y : y + h, x : x + w]
class CropBlackEdges:
@staticmethod
def is_black_edge(__img_gray_slice: Mat, black_pixel: int, ratio: float = 0.6):
pixels_compared = __img_gray_slice < black_pixel
def is_black_edge(img_gray_slice: Mat, black_pixel: int, ratio: float = 0.6):
pixels_compared = img_gray_slice < black_pixel
return np.count_nonzero(pixels_compared) > math.floor(
__img_gray_slice.size * ratio
img_gray_slice.size * ratio,
)
@classmethod
def get_crop_rect(cls, img_gray: Mat, black_threshold: int = 25):
def get_crop_rect(cls, img_gray: Mat, black_threshold: int = 25): # noqa: C901
height, width = img_gray.shape[:2]
left = 0
right = width
@ -54,13 +57,22 @@ class CropBlackEdges:
break
bottom -= 1
assert right > left, "cropped width < 0"
assert bottom > top, "cropped height < 0"
if right <= left:
msg = "cropped width < 0"
raise ValueError(msg)
if bottom <= top:
msg = "cropped height < 0"
raise ValueError(msg)
return (left, top, right - left, bottom - top)
@classmethod
def crop(
cls, img: Mat, convert_flag: cv2.COLOR_BGR2GRAY, black_threshold: int = 25
cls,
img: Mat,
convert_flag: cv2.COLOR_BGR2GRAY,
black_threshold: int = 25,
) -> Mat:
rect = cls.get_crop_rect(cv2.cvtColor(img, convert_flag), black_threshold)
return crop_xywh(img, rect)

View File

@ -1,18 +0,0 @@
from .builder import ImageHashesDatabaseBuilder
from .index import ImageHashesDatabase, ImageHashesDatabasePropertyMissingError
from .models import (
ImageHashBuildTask,
ImageHashHashType,
ImageHashResult,
ImageHashCategory,
)
__all__ = [
"ImageHashesDatabase",
"ImageHashesDatabasePropertyMissingError",
"ImageHashHashType",
"ImageHashResult",
"ImageHashCategory",
"ImageHashesDatabaseBuilder",
"ImageHashBuildTask",
]

View File

@ -1,85 +0,0 @@
import logging
from datetime import datetime, timezone
from sqlite3 import Connection
from typing import List
from arcaea_offline_ocr.core import hashers
from .index import ImageHashesDatabase
from .models import ImageHash, ImageHashBuildTask, ImageHashHashType
logger = logging.getLogger(__name__)
class ImageHashesDatabaseBuilder:
@staticmethod
def __insert_property(conn: Connection, key: str, value: str):
return conn.execute(
"INSERT INTO properties (key, value) VALUES (?, ?)",
(key, value),
)
@classmethod
def build(
cls,
conn: Connection,
tasks: List[ImageHashBuildTask],
*,
hash_size: int = 16,
high_freq_factor: int = 4,
):
rows: List[ImageHash] = []
for task in tasks:
try:
img_gray = task.imread_function(task.image_path)
for hash_type, hash_mat in [
(
ImageHashHashType.AVERAGE,
hashers.average(img_gray, hash_size),
),
(
ImageHashHashType.DCT,
hashers.dct(img_gray, hash_size, high_freq_factor),
),
(
ImageHashHashType.DIFFERENCE,
hashers.difference(img_gray, hash_size),
),
]:
rows.append(
ImageHash(
hash_type=hash_type,
category=task.category,
label=task.label,
hash=ImageHashesDatabase.hash_mat_to_bytes(hash_mat),
)
)
except Exception:
logger.exception("Error processing task %r", task)
conn.execute("CREATE TABLE properties (`key` VARCHAR, `value` VARCHAR)")
conn.execute(
"CREATE TABLE hashes (`hash_type` INTEGER, `category` INTEGER, `label` VARCHAR, `hash` BLOB)"
)
now = datetime.now(tz=timezone.utc)
timestamp = int(now.timestamp() * 1000)
cls.__insert_property(conn, ImageHashesDatabase.KEY_HASH_SIZE, str(hash_size))
cls.__insert_property(
conn, ImageHashesDatabase.KEY_HIGH_FREQ_FACTOR, str(high_freq_factor)
)
cls.__insert_property(
conn, ImageHashesDatabase.KEY_BUILT_TIMESTAMP, str(timestamp)
)
conn.executemany(
"INSERT INTO hashes (hash_type, category, label, hash) VALUES (?, ?, ?, ?)",
[
(row.hash_type.value, row.category.value, row.label, row.hash)
for row in rows
],
)
conn.commit()

View File

@ -1,144 +0,0 @@
import sqlite3
from datetime import datetime, timezone
from typing import Any, Callable, List, Optional, TypeVar
from arcaea_offline_ocr.core import hashers
from arcaea_offline_ocr.types import Mat
from .models import ImageHashHashType, ImageHashResult, ImageHashCategory
T = TypeVar("T")
def _sql_hamming_distance(hash1: bytes, hash2: bytes):
assert len(hash1) == len(hash2), "hash size does not match!"
count = sum(1 for byte1, byte2 in zip(hash1, hash2) if byte1 != byte2)
return count
class ImageHashesDatabasePropertyMissingError(Exception):
pass
class ImageHashesDatabase:
KEY_HASH_SIZE = "hash_size"
KEY_HIGH_FREQ_FACTOR = "high_freq_factor"
KEY_BUILT_TIMESTAMP = "built_timestamp"
def __init__(self, conn: sqlite3.Connection):
self.conn = conn
self.conn.create_function("HAMMING_DISTANCE", 2, _sql_hamming_distance)
self._hash_size: int = -1
self._high_freq_factor: int = -1
self._built_time: Optional[datetime] = None
self._hashes_count = {
ImageHashCategory.JACKET: 0,
ImageHashCategory.PARTNER_ICON: 0,
}
self._hash_length: int = -1
self._initialize()
@property
def hash_size(self):
return self._hash_size
@property
def high_freq_factor(self):
return self._high_freq_factor
@property
def hash_length(self):
return self._hash_length
def _initialize(self):
def query_property(key, convert_func: Callable[[Any], T]) -> Optional[T]:
result = self.conn.execute(
"SELECT value FROM properties WHERE key = ?",
(key,),
).fetchone()
return convert_func(result[0]) if result is not None else None
def set_hashes_count(category: ImageHashCategory):
self._hashes_count[category] = self.conn.execute(
"SELECT COUNT(DISTINCT label) FROM hashes WHERE category = ?",
(category.value,),
).fetchone()[0]
hash_size = query_property(self.KEY_HASH_SIZE, lambda x: int(x))
if hash_size is None:
raise ImageHashesDatabasePropertyMissingError("hash_size")
self._hash_size = hash_size
high_freq_factor = query_property(self.KEY_HIGH_FREQ_FACTOR, lambda x: int(x))
if high_freq_factor is None:
raise ImageHashesDatabasePropertyMissingError("high_freq_factor")
self._high_freq_factor = high_freq_factor
self._built_time = query_property(
self.KEY_BUILT_TIMESTAMP,
lambda ts: datetime.fromtimestamp(int(ts) / 1000, tz=timezone.utc),
)
set_hashes_count(ImageHashCategory.JACKET)
set_hashes_count(ImageHashCategory.PARTNER_ICON)
self._hash_length = self._hash_size**2
def lookup_hash(
self, category: ImageHashCategory, hash_type: ImageHashHashType, hash: bytes
) -> List[ImageHashResult]:
cursor = self.conn.execute(
"SELECT"
" label,"
" HAMMING_DISTANCE(hash, ?) AS distance"
" FROM hashes"
" WHERE category = ? AND hash_type = ?"
" ORDER BY distance ASC LIMIT 10",
(hash, category.value, hash_type.value),
)
results = []
for label, distance in cursor.fetchall():
results.append(
ImageHashResult(
hash_type=hash_type,
category=category,
label=label,
confidence=(self.hash_length - distance) / self.hash_length,
)
)
return results
@staticmethod
def hash_mat_to_bytes(hash: Mat) -> bytes:
return bytes([255 if b else 0 for b in hash.flatten()])
def identify_image(self, category: ImageHashCategory, img) -> List[ImageHashResult]:
results = []
ahash = hashers.average(img, self.hash_size)
dhash = hashers.difference(img, self.hash_size)
phash = hashers.dct(img, self.hash_size, self.high_freq_factor)
results.extend(
self.lookup_hash(
category, ImageHashHashType.AVERAGE, self.hash_mat_to_bytes(ahash)
)
)
results.extend(
self.lookup_hash(
category, ImageHashHashType.DIFFERENCE, self.hash_mat_to_bytes(dhash)
)
)
results.extend(
self.lookup_hash(
category, ImageHashHashType.DCT, self.hash_mat_to_bytes(phash)
)
)
return results

View File

@ -1,46 +0,0 @@
import dataclasses
from enum import IntEnum
from typing import Callable
import cv2
from arcaea_offline_ocr.types import Mat
class ImageHashHashType(IntEnum):
AVERAGE = 0
DIFFERENCE = 1
DCT = 2
class ImageHashCategory(IntEnum):
JACKET = 0
PARTNER_ICON = 1
@dataclasses.dataclass
class ImageHash:
hash_type: ImageHashHashType
category: ImageHashCategory
label: str
hash: bytes
@dataclasses.dataclass
class ImageHashResult:
hash_type: ImageHashHashType
category: ImageHashCategory
label: str
confidence: float
def _default_imread_gray(image_path: str):
return cv2.cvtColor(cv2.imread(image_path, cv2.IMREAD_COLOR), cv2.COLOR_BGR2GRAY)
@dataclasses.dataclass
class ImageHashBuildTask:
image_path: str
category: ImageHashCategory
label: str
imread_function: Callable[[str], Mat] = _default_imread_gray

View File

@ -1,2 +0,0 @@
from .common import DeviceOcrResult
from .ocr import DeviceOcr

View File

@ -1,17 +0,0 @@
from dataclasses import dataclass
from typing import Optional
@dataclass
class DeviceOcrResult:
rating_class: int
pure: int
far: int
lost: int
score: int
max_recall: Optional[int] = None
song_id: Optional[str] = None
song_id_possibility: Optional[float] = None
clear_status: Optional[int] = None
partner_id: Optional[str] = None
partner_id_possibility: Optional[float] = None

View File

@ -1,3 +0,0 @@
from .definition import *
from .extractor import *
from .masker import *

View File

@ -1,2 +0,0 @@
from .auto import *
from .common import DeviceRois

View File

@ -1,15 +0,0 @@
from typing import Tuple
Rect = Tuple[int, int, int, int]
class DeviceRois:
pure: Rect
far: Rect
lost: Rect
score: Rect
rating_class: Rect
max_recall: Rect
jacket: Rect
clear_status: Rect
partner_icon: Rect

View File

@ -1 +0,0 @@
from .common import DeviceRoisExtractor

View File

@ -1,48 +0,0 @@
from ....crop import crop_xywh
from ....types import Mat
from ..definition.common import DeviceRois
class DeviceRoisExtractor:
def __init__(self, img: Mat, rois: DeviceRois):
self.img = img
self.sizes = rois
def __construct_int_rect(self, rect):
return tuple(round(r) for r in rect)
@property
def pure(self):
return crop_xywh(self.img, self.__construct_int_rect(self.sizes.pure))
@property
def far(self):
return crop_xywh(self.img, self.__construct_int_rect(self.sizes.far))
@property
def lost(self):
return crop_xywh(self.img, self.__construct_int_rect(self.sizes.lost))
@property
def score(self):
return crop_xywh(self.img, self.__construct_int_rect(self.sizes.score))
@property
def jacket(self):
return crop_xywh(self.img, self.__construct_int_rect(self.sizes.jacket))
@property
def rating_class(self):
return crop_xywh(self.img, self.__construct_int_rect(self.sizes.rating_class))
@property
def max_recall(self):
return crop_xywh(self.img, self.__construct_int_rect(self.sizes.max_recall))
@property
def clear_status(self):
return crop_xywh(self.img, self.__construct_int_rect(self.sizes.clear_status))
@property
def partner_icon(self):
return crop_xywh(self.img, self.__construct_int_rect(self.sizes.partner_icon))

View File

@ -1,2 +0,0 @@
from .auto import *
from .common import DeviceRoisMasker

View File

@ -1,59 +0,0 @@
from ....types import Mat
class DeviceRoisMasker:
@classmethod
def pure(cls, roi_bgr: Mat) -> Mat:
raise NotImplementedError()
@classmethod
def far(cls, roi_bgr: Mat) -> Mat:
raise NotImplementedError()
@classmethod
def lost(cls, roi_bgr: Mat) -> Mat:
raise NotImplementedError()
@classmethod
def score(cls, roi_bgr: Mat) -> Mat:
raise NotImplementedError()
@classmethod
def rating_class_pst(cls, roi_bgr: Mat) -> Mat:
raise NotImplementedError()
@classmethod
def rating_class_prs(cls, roi_bgr: Mat) -> Mat:
raise NotImplementedError()
@classmethod
def rating_class_ftr(cls, roi_bgr: Mat) -> Mat:
raise NotImplementedError()
@classmethod
def rating_class_byd(cls, roi_bgr: Mat) -> Mat:
raise NotImplementedError()
@classmethod
def rating_class_etr(cls, roi_bgr: Mat) -> Mat:
raise NotImplementedError()
@classmethod
def max_recall(cls, roi_bgr: Mat) -> Mat:
raise NotImplementedError()
@classmethod
def clear_status_track_lost(cls, roi_bgr: Mat) -> Mat:
raise NotImplementedError()
@classmethod
def clear_status_track_complete(cls, roi_bgr: Mat) -> Mat:
raise NotImplementedError()
@classmethod
def clear_status_full_recall(cls, roi_bgr: Mat) -> Mat:
raise NotImplementedError()
@classmethod
def clear_status_pure_memory(cls, roi_bgr: Mat) -> Mat:
raise NotImplementedError()

View File

@ -1,119 +0,0 @@
import sqlite3
from typing import List, Union
import cv2
import numpy as np
from .types import Mat
def phash_opencv(img_gray, hash_size=8, highfreq_factor=4):
# type: (Union[Mat, np.ndarray], int, int) -> np.ndarray
"""
Perceptual Hash computation.
Implementation follows
http://www.hackerfactor.com/blog/index.php?/archives/432-Looks-Like-It.html
Adapted from `imagehash.phash`, pure opencv implementation
The result is slightly different from `imagehash.phash`.
"""
if hash_size < 2:
raise ValueError("Hash size must be greater than or equal to 2")
img_size = hash_size * highfreq_factor
image = cv2.resize(img_gray, (img_size, img_size), interpolation=cv2.INTER_LANCZOS4)
image = np.float32(image)
dct = cv2.dct(image)
dctlowfreq = dct[:hash_size, :hash_size]
med = np.median(dctlowfreq)
diff = dctlowfreq > med
return diff
def hamming_distance_sql_function(user_input, db_entry) -> int:
return np.count_nonzero(
np.frombuffer(user_input, bool) ^ np.frombuffer(db_entry, bool)
)
class ImagePhashDatabase:
def __init__(self, db_path: str):
with sqlite3.connect(db_path) as conn:
self.hash_size = int(
conn.execute(
"SELECT value FROM properties WHERE key = 'hash_size'"
).fetchone()[0]
)
self.highfreq_factor = int(
conn.execute(
"SELECT value FROM properties WHERE key = 'highfreq_factor'"
).fetchone()[0]
)
self.built_timestamp = int(
conn.execute(
"SELECT value FROM properties WHERE key = 'built_timestamp'"
).fetchone()[0]
)
self.ids: List[str] = [
i[0] for i in conn.execute("SELECT id FROM hashes").fetchall()
]
self.hashes_byte = [
i[0] for i in conn.execute("SELECT hash FROM hashes").fetchall()
]
self.hashes = [np.frombuffer(hb, bool) for hb in self.hashes_byte]
self.jacket_ids: List[str] = []
self.jacket_hashes = []
self.partner_icon_ids: List[str] = []
self.partner_icon_hashes = []
for _id, _hash in zip(self.ids, self.hashes):
id_splitted = _id.split("||")
if len(id_splitted) > 1 and id_splitted[0] == "partner_icon":
self.partner_icon_ids.append(id_splitted[1])
self.partner_icon_hashes.append(_hash)
else:
self.jacket_ids.append(_id)
self.jacket_hashes.append(_hash)
def calculate_phash(self, img_gray: Mat):
return phash_opencv(
img_gray, hash_size=self.hash_size, highfreq_factor=self.highfreq_factor
)
def lookup_hash(self, image_hash: np.ndarray, *, limit: int = 5):
image_hash = image_hash.flatten()
xor_results = [
(id, np.count_nonzero(image_hash ^ h))
for id, h in zip(self.ids, self.hashes)
]
return sorted(xor_results, key=lambda r: r[1])[:limit]
def lookup_image(self, img_gray: Mat):
image_hash = self.calculate_phash(img_gray)
return self.lookup_hash(image_hash)[0]
def lookup_jackets(self, img_gray: Mat, *, limit: int = 5):
image_hash = self.calculate_phash(img_gray).flatten()
xor_results = [
(id, np.count_nonzero(image_hash ^ h))
for id, h in zip(self.jacket_ids, self.jacket_hashes)
]
return sorted(xor_results, key=lambda r: r[1])[:limit]
def lookup_jacket(self, img_gray: Mat):
return self.lookup_jackets(img_gray)[0]
def lookup_partner_icons(self, img_gray: Mat, *, limit: int = 5):
image_hash = self.calculate_phash(img_gray).flatten()
xor_results = [
(id, np.count_nonzero(image_hash ^ h))
for id, h in zip(self.partner_icon_ids, self.partner_icon_hashes)
]
return sorted(xor_results, key=lambda r: r[1])[:limit]
def lookup_partner_icon(self, img_gray: Mat):
return self.lookup_partner_icons(img_gray)[0]

View File

@ -0,0 +1,12 @@
from .base import ImageCategory, ImageIdProvider, ImageIdProviderResult, OcrTextProvider
from .ihdb import ImageHashDatabaseIdProvider
from .knn import OcrKNearestTextProvider
__all__ = [
"ImageCategory",
"ImageHashDatabaseIdProvider",
"ImageIdProvider",
"ImageIdProviderResult",
"OcrKNearestTextProvider",
"OcrTextProvider",
]

View File

@ -0,0 +1,50 @@
from __future__ import annotations
from abc import ABC, abstractmethod
from dataclasses import dataclass
from enum import IntEnum
from typing import TYPE_CHECKING, Any, Sequence
if TYPE_CHECKING:
from arcaea_offline_ocr.types import Mat
class OcrTextProvider(ABC):
@abstractmethod
def result_raw(self, img: Mat, /, *args, **kwargs) -> Any: ...
@abstractmethod
def result(self, img: Mat, /, *args, **kwargs) -> str | None: ...
class ImageCategory(IntEnum):
JACKET = 0
PARTNER_ICON = 1
@dataclass(kw_only=True)
class ImageIdProviderResult:
image_id: str
category: ImageCategory
confidence: float
class ImageIdProvider(ABC):
@abstractmethod
def result(
self,
img: Mat,
category: ImageCategory,
/,
*args,
**kwargs,
) -> ImageIdProviderResult: ...
@abstractmethod
def results(
self,
img: Mat,
category: ImageCategory,
/,
*args,
**kwargs,
) -> Sequence[ImageIdProviderResult]: ...

View File

@ -0,0 +1,203 @@
from __future__ import annotations
from dataclasses import dataclass
from datetime import datetime, timezone
from enum import IntEnum
from typing import TYPE_CHECKING, Any, Callable, TypeVar
from arcaea_offline_ocr.core import hashers
from .base import ImageCategory, ImageIdProvider, ImageIdProviderResult
if TYPE_CHECKING:
import sqlite3
from arcaea_offline_ocr.types import Mat
T = TypeVar("T")
PROP_KEY_HASH_SIZE = "hash_size"
PROP_KEY_HIGH_FREQ_FACTOR = "high_freq_factor"
PROP_KEY_BUILT_AT = "built_at"
def _sql_hamming_distance(hash1: bytes, hash2: bytes):
if len(hash1) != len(hash2):
msg = "hash size does not match!"
raise ValueError(msg)
return sum(1 for byte1, byte2 in zip(hash1, hash2) if byte1 != byte2)
class ImageHashType(IntEnum):
AVERAGE = 0
DIFFERENCE = 1
DCT = 2
@dataclass(kw_only=True)
class ImageHashDatabaseIdProviderResult(ImageIdProviderResult):
image_hash_type: ImageHashType
class MissingPropertiesError(Exception):
keys: list[str]
def __init__(self, keys, *args):
super().__init__(*args)
self.keys = keys
class ImageHashDatabaseIdProvider(ImageIdProvider):
def __init__(self, conn: sqlite3.Connection):
self.conn = conn
self.conn.create_function("HAMMING_DISTANCE", 2, _sql_hamming_distance)
self.properties = {
PROP_KEY_HASH_SIZE: -1,
PROP_KEY_HIGH_FREQ_FACTOR: -1,
PROP_KEY_BUILT_AT: None,
}
self._hashes_count = {
ImageCategory.JACKET: 0,
ImageCategory.PARTNER_ICON: 0,
}
self._hash_length: int = -1
self._initialize()
@property
def hash_size(self) -> int:
return self.properties[PROP_KEY_HASH_SIZE]
@property
def high_freq_factor(self) -> int:
return self.properties[PROP_KEY_HIGH_FREQ_FACTOR]
@property
def built_at(self) -> datetime | None:
return self.properties.get(PROP_KEY_BUILT_AT)
@property
def hash_length(self):
return self._hash_length
def _initialize(self):
def get_property(key, converter: Callable[[Any], T]) -> T | None:
result = self.conn.execute(
"SELECT value FROM properties WHERE key = ?",
(key,),
).fetchone()
return converter(result[0]) if result is not None else None
def set_hashes_count(category: ImageCategory):
self._hashes_count[category] = self.conn.execute(
"SELECT COUNT(DISTINCT `id`) FROM hashes WHERE category = ?",
(category.value,),
).fetchone()[0]
properties_converter_map = {
PROP_KEY_HASH_SIZE: lambda x: int(x),
PROP_KEY_HIGH_FREQ_FACTOR: lambda x: int(x),
PROP_KEY_BUILT_AT: lambda ts: datetime.fromtimestamp(
int(ts) / 1000,
tz=timezone.utc,
),
}
required_properties = [PROP_KEY_HASH_SIZE, PROP_KEY_HIGH_FREQ_FACTOR]
missing_properties = []
for property_key, converter in properties_converter_map.items():
value = get_property(property_key, converter)
if value is None:
if property_key in required_properties:
missing_properties.append(property_key)
continue
self.properties[property_key] = value
if missing_properties:
raise MissingPropertiesError(keys=missing_properties)
set_hashes_count(ImageCategory.JACKET)
set_hashes_count(ImageCategory.PARTNER_ICON)
self._hash_length = self.hash_size**2
def lookup_hash(
self,
category: ImageCategory,
hash_type: ImageHashType,
hash_data: bytes,
) -> list[ImageHashDatabaseIdProviderResult]:
cursor = self.conn.execute(
"""
SELECT
`id`,
HAMMING_DISTANCE(hash, ?) AS distance
FROM hashes
WHERE category = ? AND hash_type = ?
ORDER BY distance ASC LIMIT 10""",
(hash_data, category.value, hash_type.value),
)
results = []
for id_, distance in cursor.fetchall():
results.append(
ImageHashDatabaseIdProviderResult(
image_id=id_,
category=category,
confidence=(self.hash_length - distance) / self.hash_length,
image_hash_type=hash_type,
),
)
return results
@staticmethod
def hash_mat_to_bytes(hash_mat: Mat) -> bytes:
return bytes([255 if b else 0 for b in hash_mat.flatten()])
def results(self, img: Mat, category: ImageCategory, /):
results: list[ImageHashDatabaseIdProviderResult] = []
results.extend(
self.lookup_hash(
category,
ImageHashType.AVERAGE,
self.hash_mat_to_bytes(hashers.average(img, self.hash_size)),
),
)
results.extend(
self.lookup_hash(
category,
ImageHashType.DIFFERENCE,
self.hash_mat_to_bytes(hashers.difference(img, self.hash_size)),
),
)
results.extend(
self.lookup_hash(
category,
ImageHashType.DCT,
self.hash_mat_to_bytes(
hashers.dct(img, self.hash_size, self.high_freq_factor),
),
),
)
return results
def result(
self,
img: Mat,
category: ImageCategory,
/,
*,
hash_type: ImageHashType = ImageHashType.DCT,
):
return next(
it for it in self.results(img, category) if it.image_hash_type == hash_type
)

View File

@ -1,27 +1,31 @@
from __future__ import annotations
import logging
import math
from typing import Optional, Sequence, Tuple
from typing import TYPE_CHECKING, Callable, Sequence
import cv2
import numpy as np
from .crop import crop_xywh
from .types import Mat
from arcaea_offline_ocr.crop import crop_xywh
__all__ = [
"FixRects",
"preprocess_hog",
"ocr_digits_by_contour_get_samples",
"ocr_digits_by_contour_knn",
]
from .base import OcrTextProvider
if TYPE_CHECKING:
from cv2.ml import KNearest
from arcaea_offline_ocr.types import Mat
logger = logging.getLogger(__name__)
class FixRects:
@staticmethod
def connect_broken(
rects: Sequence[Tuple[int, int, int, int]],
rects: Sequence[tuple[int, int, int, int]],
img_width: int,
img_height: int,
tolerance: Optional[int] = None,
tolerance: int | None = None,
):
# for a "broken" digit, please refer to
# /assets/fix_rects/broken_masked.jpg
@ -69,7 +73,7 @@ class FixRects:
@staticmethod
def split_connected(
img_masked: Mat,
rects: Sequence[Tuple[int, int, int, int]],
rects: Sequence[tuple[int, int, int, int]],
rect_wh_ratio: float = 1.05,
width_range_ratio: float = 0.1,
):
@ -110,7 +114,7 @@ class FixRects:
# split the rect
new_rects.extend(
[(rx, ry, x_mid - rx, rh), (x_mid, ry, rx + rw - x_mid, rh)]
[(rx, ry, x_mid - rx, rh), (x_mid, ry, rx + rw - x_mid, rh)],
)
return_rects = [r for r in rects if r not in connected_rects]
@ -131,11 +135,21 @@ def resize_fill_square(img: Mat, target: int = 20):
border_size = math.ceil((max(new_w, new_h) - min(new_w, new_h)) / 2)
if new_w < new_h:
resized = cv2.copyMakeBorder(
resized, 0, 0, border_size, border_size, cv2.BORDER_CONSTANT
resized,
0,
0,
border_size,
border_size,
cv2.BORDER_CONSTANT,
)
else:
resized = cv2.copyMakeBorder(
resized, border_size, border_size, 0, 0, cv2.BORDER_CONSTANT
resized,
border_size,
border_size,
0,
0,
cv2.BORDER_CONSTANT,
)
return cv2.resize(resized, (target, target))
@ -150,31 +164,94 @@ def preprocess_hog(digit_rois):
return np.float32(samples)
def ocr_digit_samples_knn(__samples, knn_model: cv2.ml.KNearest, k: int = 4):
_, results, _, _ = knn_model.findNearest(__samples, k)
result_list = [int(r) for r in results.ravel()]
result_str = "".join(str(r) for r in result_list if r > -1)
return int(result_str) if result_str else 0
def ocr_digit_samples_knn(samples, knn_model: cv2.ml.KNearest, k: int = 4):
_, results, _, _ = knn_model.findNearest(samples, k)
return [int(r) for r in results.ravel()]
def ocr_digits_by_contour_get_samples(__roi_gray: Mat, size: int):
roi = __roi_gray.copy()
contours, _ = cv2.findContours(roi, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
rects = [cv2.boundingRect(c) for c in contours]
rects = FixRects.connect_broken(rects, roi.shape[1], roi.shape[0])
rects = FixRects.split_connected(roi, rects)
rects = sorted(rects, key=lambda r: r[0])
# digit_rois = [cv2.resize(crop_xywh(roi, rect), size) for rect in rects]
digit_rois = [resize_fill_square(crop_xywh(roi, rect), size) for rect in rects]
return preprocess_hog(digit_rois)
class OcrKNearestTextProvider(OcrTextProvider):
_ContourFilter = Callable[["Mat"], bool]
_RectsFilter = Callable[[Sequence[int]], bool]
def __init__(self, model: KNearest):
self.model = model
def ocr_digits_by_contour_knn(
__roi_gray: Mat,
knn_model: cv2.ml.KNearest,
*,
k=4,
size: int = 20,
) -> int:
samples = ocr_digits_by_contour_get_samples(__roi_gray, size)
return ocr_digit_samples_knn(samples, knn_model, k)
def contours(
self,
img: Mat,
/,
*,
contours_filter: _ContourFilter | None = None,
):
cnts, _ = cv2.findContours(img, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
if contours_filter:
cnts = list(filter(contours_filter, cnts))
return cnts
def result_raw(
self,
img: Mat,
/,
*,
fix_rects: bool = True,
contours_filter: _ContourFilter | None = None,
rects_filter: _RectsFilter | None = None,
):
"""
:param img: grayscaled roi
"""
try:
cnts, _ = cv2.findContours(img, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
if contours_filter:
cnts = list(filter(contours_filter, cnts))
rects = [cv2.boundingRect(cnt) for cnt in cnts]
if fix_rects and rects_filter:
rects = FixRects.connect_broken(rects, img.shape[1], img.shape[0])
rects = list(filter(rects_filter, rects))
rects = FixRects.split_connected(img, rects)
elif fix_rects:
rects = FixRects.connect_broken(rects, img.shape[1], img.shape[0])
rects = FixRects.split_connected(img, rects)
elif rects_filter:
rects = list(filter(rects_filter, rects))
rects = sorted(rects, key=lambda r: r[0])
digits = []
for rect in rects:
digit = crop_xywh(img, rect)
digit = resize_fill_square(digit, 20)
digits.append(digit)
samples = preprocess_hog(digits)
return ocr_digit_samples_knn(samples, self.model)
except Exception:
logger.exception("Error occurred during KNearest OCR")
return None
def result(
self,
img: Mat,
/,
*,
fix_rects: bool = True,
contours_filter: _ContourFilter | None = None,
rects_filter: _RectsFilter | None = None,
):
"""
:param img: grayscaled roi
"""
raw = self.result_raw(
img,
fix_rects=fix_rects,
contours_filter=contours_filter,
rects_filter=rects_filter,
)
return (
"".join(["".join(str(r) for r in raw if r > -1)])
if raw is not None
else None
)

View File

@ -0,0 +1,3 @@
from .chieri import ChieriBotV4Best30Scenario
__all__ = ["ChieriBotV4Best30Scenario"]

View File

@ -0,0 +1,24 @@
from __future__ import annotations
from abc import abstractmethod
from typing import TYPE_CHECKING
from arcaea_offline_ocr.scenarios.base import OcrScenario, OcrScenarioResult
if TYPE_CHECKING:
from arcaea_offline_ocr.types import Mat
class Best30Scenario(OcrScenario):
@abstractmethod
def components(self, img: Mat, /) -> list[Mat]: ...
@abstractmethod
def result(self, component_img: Mat, /, *args, **kwargs) -> OcrScenarioResult: ...
@abstractmethod
def results(self, img: Mat, /, *args, **kwargs) -> list[OcrScenarioResult]:
"""
Commonly a shorthand for `[self.result(comp) for comp in self.components(img)]`
"""
...

View File

@ -0,0 +1,3 @@
from .v4 import ChieriBotV4Best30Scenario
__all__ = ["ChieriBotV4Best30Scenario"]

View File

@ -0,0 +1,3 @@
from .impl import ChieriBotV4Best30Scenario
__all__ = ["ChieriBotV4Best30Scenario"]

View File

@ -1,19 +1,19 @@
import numpy as np
__all__ = [
"FONT_THRESHOLD",
"PURE_BG_MIN_HSV",
"PURE_BG_MAX_HSV",
"FAR_BG_MIN_HSV",
"FAR_BG_MAX_HSV",
"LOST_BG_MIN_HSV",
"LOST_BG_MAX_HSV",
"BYD_MIN_HSV",
"BYD_MAX_HSV",
"FTR_MIN_HSV",
"BYD_MIN_HSV",
"FAR_BG_MAX_HSV",
"FAR_BG_MIN_HSV",
"FONT_THRESHOLD",
"FTR_MAX_HSV",
"PRS_MIN_HSV",
"FTR_MIN_HSV",
"LOST_BG_MAX_HSV",
"LOST_BG_MIN_HSV",
"PRS_MAX_HSV",
"PRS_MIN_HSV",
"PURE_BG_MAX_HSV",
"PURE_BG_MIN_HSV",
]
FONT_THRESHOLD = 160
@ -27,11 +27,11 @@ FAR_BG_MAX_HSV = np.array([20, 255, 255], np.uint8)
LOST_BG_MIN_HSV = np.array([115, 60, 150], np.uint8)
LOST_BG_MAX_HSV = np.array([140, 255, 255], np.uint8)
BYD_MIN_HSV = (158, 120, 0)
BYD_MAX_HSV = (172, 255, 255)
BYD_MIN_HSV = np.array([158, 120, 0], np.uint8)
BYD_MAX_HSV = np.array([172, 255, 255], np.uint8)
FTR_MIN_HSV = (145, 70, 0)
FTR_MAX_HSV = (160, 255, 255)
FTR_MIN_HSV = np.array([145, 70, 0], np.uint8)
FTR_MAX_HSV = np.array([160, 255, 255], np.uint8)
PRS_MIN_HSV = (45, 60, 0)
PRS_MAX_HSV = (70, 255, 255)
PRS_MIN_HSV = np.array([45, 60, 0], np.uint8)
PRS_MAX_HSV = np.array([70, 255, 255], np.uint8)

View File

@ -1,18 +1,22 @@
from typing import List, Optional, Tuple
from __future__ import annotations
from typing import TYPE_CHECKING
import cv2
import numpy as np
from ....crop import crop_xywh
from ....ocr import (
FixRects,
ocr_digits_by_contour_knn,
preprocess_hog,
resize_fill_square,
from arcaea_offline_ocr.crop import crop_xywh
from arcaea_offline_ocr.providers import (
ImageCategory,
ImageIdProvider,
OcrKNearestTextProvider,
)
from ....phash_db import ImagePhashDatabase
from ....types import Mat
from ...shared import B30OcrResultItem
from arcaea_offline_ocr.scenarios.b30.base import Best30Scenario
from arcaea_offline_ocr.scenarios.base import OcrScenarioResult
if TYPE_CHECKING:
from arcaea_offline_ocr.types import Mat
from .colors import (
BYD_MAX_HSV,
BYD_MIN_HSV,
@ -30,42 +34,18 @@ from .colors import (
from .rois import ChieriBotV4Rois
class ChieriBotV4Ocr:
class ChieriBotV4Best30Scenario(Best30Scenario):
def __init__(
self,
score_knn: cv2.ml.KNearest,
pfl_knn: cv2.ml.KNearest,
phash_db: ImagePhashDatabase,
score_knn_provider: OcrKNearestTextProvider,
pfl_knn_provider: OcrKNearestTextProvider,
image_id_provider: ImageIdProvider,
factor: float = 1.0,
):
self.__score_knn = score_knn
self.__pfl_knn = pfl_knn
self.__phash_db = phash_db
self.__rois = ChieriBotV4Rois(factor)
@property
def score_knn(self):
return self.__score_knn
@score_knn.setter
def score_knn(self, knn_digits_model: cv2.ml.KNearest):
self.__score_knn = knn_digits_model
@property
def pfl_knn(self):
return self.__pfl_knn
@pfl_knn.setter
def pfl_knn(self, knn_digits_model: cv2.ml.KNearest):
self.__pfl_knn = knn_digits_model
@property
def phash_db(self):
return self.__phash_db
@phash_db.setter
def phash_db(self, phash_db: ImagePhashDatabase):
self.__phash_db = phash_db
self.pfl_knn_provider = pfl_knn_provider
self.score_knn_provider = score_knn_provider
self.image_id_provider = image_id_provider
@property
def rois(self):
@ -95,41 +75,50 @@ class ChieriBotV4Ocr:
rating_class_results = [np.count_nonzero(m) for m in rating_class_masks]
if max(rating_class_results) < 70:
return 0
else:
return max(enumerate(rating_class_results), key=lambda i: i[1])[0] + 1
return max(enumerate(rating_class_results), key=lambda i: i[1])[0] + 1
def ocr_component_song_id(self, component_bgr: Mat):
def ocr_component_song_id_results(self, component_bgr: Mat):
jacket_rect = self.rois.component_rois.jacket_rect.floored()
jacket_roi = cv2.cvtColor(
crop_xywh(component_bgr, jacket_rect), cv2.COLOR_BGR2GRAY
crop_xywh(component_bgr, jacket_rect),
cv2.COLOR_BGR2GRAY,
)
return self.phash_db.lookup_jacket(jacket_roi)[0]
return self.image_id_provider.results(jacket_roi, ImageCategory.JACKET)
def ocr_component_score_knn(self, component_bgr: Mat) -> int:
# sourcery skip: inline-immediately-returned-variable
score_rect = self.rois.component_rois.score_rect.rounded()
score_roi = cv2.cvtColor(
crop_xywh(component_bgr, score_rect), cv2.COLOR_BGR2GRAY
crop_xywh(component_bgr, score_rect),
cv2.COLOR_BGR2GRAY,
)
_, score_roi = cv2.threshold(
score_roi, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU
score_roi,
0,
255,
cv2.THRESH_BINARY + cv2.THRESH_OTSU,
)
if score_roi[1][1] == 255:
score_roi = 255 - score_roi
contours, _ = cv2.findContours(
score_roi, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE
score_roi,
cv2.RETR_EXTERNAL,
cv2.CHAIN_APPROX_SIMPLE,
)
for contour in contours:
rect = cv2.boundingRect(contour)
if rect[3] > score_roi.shape[0] * 0.5:
continue
score_roi = cv2.fillPoly(score_roi, [contour], 0)
return ocr_digits_by_contour_knn(score_roi, self.score_knn)
ocr_result = self.score_knn_provider.result(score_roi)
return int(ocr_result) if ocr_result else 0
def find_pfl_rects(
self, component_pfl_processed: Mat
) -> List[Tuple[int, int, int, int]]:
self,
component_pfl_processed: Mat,
) -> list[tuple[int, int, int, int]]:
# sourcery skip: inline-immediately-returned-variable
pfl_roi_find = cv2.morphologyEx(
component_pfl_processed,
@ -137,14 +126,16 @@ class ChieriBotV4Ocr:
cv2.getStructuringElement(cv2.MORPH_RECT, [10, 1]),
)
pfl_contours, _ = cv2.findContours(
pfl_roi_find, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE
pfl_roi_find,
cv2.RETR_EXTERNAL,
cv2.CHAIN_APPROX_NONE,
)
pfl_rects = [cv2.boundingRect(c) for c in pfl_contours]
pfl_rects = [
r for r in pfl_rects if r[3] > component_pfl_processed.shape[0] * 0.1
]
pfl_rects = sorted(pfl_rects, key=lambda r: r[1])
pfl_rects_adjusted = [
return [
(
max(rect[0] - 2, 0),
rect[1],
@ -153,7 +144,6 @@ class ChieriBotV4Ocr:
)
for rect in pfl_rects
]
return pfl_rects_adjusted
def preprocess_component_pfl(self, component_bgr: Mat) -> Mat:
pfl_rect = self.rois.component_rois.pfl_rect.rounded()
@ -176,11 +166,17 @@ class ChieriBotV4Ocr:
pfl_roi_blurred = cv2.GaussianBlur(pfl_roi, (5, 5), 0)
# pfl_roi_blurred = cv2.medianBlur(pfl_roi, 3)
_, pfl_roi_blurred_threshold = cv2.threshold(
pfl_roi_blurred, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU
pfl_roi_blurred,
0,
255,
cv2.THRESH_BINARY + cv2.THRESH_OTSU,
)
# and a threshold of the original roi
_, pfl_roi_threshold = cv2.threshold(
pfl_roi, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU
pfl_roi,
0,
255,
cv2.THRESH_BINARY + cv2.THRESH_OTSU,
)
# turn thresholds into black background
if pfl_roi_blurred_threshold[2][2] == 255:
@ -190,64 +186,58 @@ class ChieriBotV4Ocr:
# return a bitwise_and result
result = cv2.bitwise_and(pfl_roi_blurred_threshold, pfl_roi_threshold)
result_eroded = cv2.erode(
result, cv2.getStructuringElement(cv2.MORPH_CROSS, (2, 2))
result,
cv2.getStructuringElement(cv2.MORPH_CROSS, (2, 2)),
)
return result_eroded if len(self.find_pfl_rects(result_eroded)) == 3 else result
def ocr_component_pfl(
self, component_bgr: Mat
) -> Tuple[Optional[int], Optional[int], Optional[int]]:
self,
component_bgr: Mat,
) -> tuple[int | None, int | None, int | None]:
try:
pfl_roi = self.preprocess_component_pfl(component_bgr)
pfl_rects = self.find_pfl_rects(pfl_roi)
pure_far_lost = []
for pfl_roi_rect in pfl_rects:
roi = crop_xywh(pfl_roi, pfl_roi_rect)
digit_contours, _ = cv2.findContours(
roi, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE
)
digit_rects = [cv2.boundingRect(c) for c in digit_contours]
digit_rects = FixRects.connect_broken(
digit_rects, roi.shape[1], roi.shape[0]
)
digit_rects = FixRects.split_connected(roi, digit_rects)
digit_rects = sorted(digit_rects, key=lambda r: r[0])
digits = []
for digit_rect in digit_rects:
digit = crop_xywh(roi, digit_rect)
digit = resize_fill_square(digit, 20)
digits.append(digit)
samples = preprocess_hog(digits)
result = self.pfl_knn_provider.result(roi)
pure_far_lost.append(int(result) if result else None)
_, results, _, _ = self.pfl_knn.findNearest(samples, 4)
results = [str(int(i)) for i in results.ravel()]
pure_far_lost.append(int("".join(results)))
return tuple(pure_far_lost)
except Exception:
except Exception: # noqa: BLE001
return (None, None, None)
def ocr_component(self, component_bgr: Mat) -> B30OcrResultItem:
def ocr_component(self, component_bgr: Mat) -> OcrScenarioResult:
component_blur = cv2.GaussianBlur(component_bgr, (5, 5), 0)
rating_class = self.ocr_component_rating_class(component_blur)
song_id = self.ocr_component_song_id(component_bgr)
# title = self.ocr_component_title(component_blur)
song_id_results = self.ocr_component_song_id_results(component_bgr)
# score = self.ocr_component_score(component_blur)
score = self.ocr_component_score_knn(component_bgr)
pure, far, lost = self.ocr_component_pfl(component_bgr)
return B30OcrResultItem(
song_id=song_id,
return OcrScenarioResult(
song_id=song_id_results[0].image_id,
song_id_results=song_id_results,
rating_class=rating_class,
# title=title,
score=score,
pure=pure,
far=far,
lost=lost,
date=None,
played_at=None,
)
def ocr(self, img_bgr: Mat) -> List[B30OcrResultItem]:
self.set_factor(img_bgr)
return [
self.ocr_component(component_bgr)
for component_bgr in self.rois.components(img_bgr)
]
def components(self, img: Mat, /):
"""
:param img: BGR format image
"""
self.set_factor(img)
return self.rois.components(img)
def result(self, component_img: Mat, /):
return self.ocr_component(component_img)
def results(self, img: Mat, /) -> list[OcrScenarioResult]:
"""
:param img: BGR format image
"""
return [self.ocr_component(component) for component in self.components(img)]

View File

@ -1,8 +1,7 @@
from typing import List
from __future__ import annotations
from ....crop import crop_xywh
from ....types import Mat, XYWHRect
from ....utils import apply_factor
from arcaea_offline_ocr.crop import crop_xywh
from arcaea_offline_ocr.types import Mat, XYWHRect
class ChieriBotV4ComponentRois:
@ -19,39 +18,39 @@ class ChieriBotV4ComponentRois:
@property
def top_font_color_detect(self):
return apply_factor(XYWHRect(35, 10, 120, 100), self.factor)
return XYWHRect(35, 10, 120, 100), self.factor
@property
def bottom_font_color_detect(self):
return apply_factor(XYWHRect(30, 125, 175, 110), self.factor)
return XYWHRect(30, 125, 175, 110) * self.factor
@property
def bg_point(self):
return apply_factor((75, 10), self.factor)
return (75 * self.factor, 10 * self.factor)
@property
def rating_class_rect(self):
return apply_factor(XYWHRect(21, 40, 7, 20), self.factor)
return XYWHRect(21, 40, 7, 20) * self.factor
@property
def title_rect(self):
return apply_factor(XYWHRect(35, 10, 430, 50), self.factor)
return XYWHRect(35, 10, 430, 50) * self.factor
@property
def jacket_rect(self):
return apply_factor(XYWHRect(263, 0, 239, 239), self.factor)
return XYWHRect(263, 0, 239, 239) * self.factor
@property
def score_rect(self):
return apply_factor(XYWHRect(30, 60, 270, 55), self.factor)
return XYWHRect(30, 60, 270, 55) * self.factor
@property
def pfl_rect(self):
return apply_factor(XYWHRect(50, 125, 80, 100), self.factor)
return XYWHRect(50, 125, 80, 100) * self.factor
@property
def date_rect(self):
return apply_factor(XYWHRect(205, 200, 225, 25), self.factor)
return XYWHRect(205, 200, 225, 25) * self.factor
class ChieriBotV4Rois:
@ -74,27 +73,27 @@ class ChieriBotV4Rois:
@property
def top(self):
return apply_factor(823, self.factor)
return 823 * self.factor
@property
def left(self):
return apply_factor(107, self.factor)
return 107 * self.factor
@property
def width(self):
return apply_factor(502, self.factor)
return 502 * self.factor
@property
def height(self):
return apply_factor(240, self.factor)
return 240 * self.factor
@property
def vertical_gap(self):
return apply_factor(74, self.factor)
return 74 * self.factor
@property
def horizontal_gap(self):
return apply_factor(40, self.factor)
return 40 * self.factor
@property
def horizontal_items(self):
@ -104,9 +103,9 @@ class ChieriBotV4Rois:
@property
def b33_vertical_gap(self):
return apply_factor(121, self.factor)
return 121 * self.factor
def components(self, img_bgr: Mat) -> List[Mat]:
def components(self, img_bgr: Mat) -> list[Mat]:
first_rect = XYWHRect(x=self.left, y=self.top, w=self.width, h=self.height)
results = []

View File

@ -0,0 +1,42 @@
from __future__ import annotations
from abc import ABC
from dataclasses import dataclass, field
from typing import TYPE_CHECKING, Sequence
if TYPE_CHECKING:
from datetime import datetime
from arcaea_offline_ocr.providers import ImageIdProviderResult
@dataclass(kw_only=True)
class OcrScenarioResult:
song_id: str
rating_class: int
score: int
song_id_results: Sequence[ImageIdProviderResult] = field(default_factory=list)
partner_id_results: Sequence[ImageIdProviderResult] = field(
default_factory=list,
)
pure: int | None = None
pure_inaccurate: int | None = None
pure_early: int | None = None
pure_late: int | None = None
far: int | None = None
far_inaccurate: int | None = None
far_early: int | None = None
far_late: int | None = None
lost: int | None = None
played_at: datetime | None = None
max_recall: int | None = None
clear_status: int | None = None
clear_type: int | None = None
modifier: int | None = None
class OcrScenario(ABC): # noqa: B024
pass

View File

@ -0,0 +1,13 @@
from .extractor import DeviceRoisExtractor
from .impl import DeviceScenario
from .masker import DeviceRoisMaskerAutoT1, DeviceRoisMaskerAutoT2
from .rois import DeviceRoisAutoT1, DeviceRoisAutoT2
__all__ = [
"DeviceRoisAutoT1",
"DeviceRoisAutoT2",
"DeviceRoisExtractor",
"DeviceRoisMaskerAutoT1",
"DeviceRoisMaskerAutoT2",
"DeviceScenario",
]

View File

@ -0,0 +1,8 @@
from abc import abstractmethod
from arcaea_offline_ocr.scenarios.base import OcrScenario, OcrScenarioResult
class DeviceScenarioBase(OcrScenario):
@abstractmethod
def result(self) -> OcrScenarioResult: ...

View File

@ -0,0 +1,3 @@
from .base import DeviceRoisExtractor
__all__ = ["DeviceRoisExtractor"]

View File

@ -0,0 +1,45 @@
from arcaea_offline_ocr.crop import crop_xywh
from arcaea_offline_ocr.scenarios.device.rois import DeviceRois
from arcaea_offline_ocr.types import Mat
class DeviceRoisExtractor:
def __init__(self, img: Mat, rois: DeviceRois):
self.img = img
self.sizes = rois
@property
def pure(self):
return crop_xywh(self.img, self.sizes.pure.rounded())
@property
def far(self):
return crop_xywh(self.img, self.sizes.far.rounded())
@property
def lost(self):
return crop_xywh(self.img, self.sizes.lost.rounded())
@property
def score(self):
return crop_xywh(self.img, self.sizes.score.rounded())
@property
def jacket(self):
return crop_xywh(self.img, self.sizes.jacket.rounded())
@property
def rating_class(self):
return crop_xywh(self.img, self.sizes.rating_class.rounded())
@property
def max_recall(self):
return crop_xywh(self.img, self.sizes.max_recall.rounded())
@property
def clear_status(self):
return crop_xywh(self.img, self.sizes.clear_status.rounded())
@property
def partner_icon(self):
return crop_xywh(self.img, self.sizes.partner_icon.rounded())

View File

@ -1,58 +1,56 @@
import cv2
import numpy as np
from ..crop import crop_xywh
from ..ocr import (
FixRects,
ocr_digit_samples_knn,
ocr_digits_by_contour_knn,
preprocess_hog,
resize_fill_square,
from arcaea_offline_ocr.providers import (
ImageCategory,
ImageIdProvider,
OcrKNearestTextProvider,
)
from ..phash_db import ImagePhashDatabase
from ..types import Mat
from .common import DeviceOcrResult
from .rois.extractor import DeviceRoisExtractor
from .rois.masker import DeviceRoisMasker
from arcaea_offline_ocr.scenarios.base import OcrScenarioResult
from arcaea_offline_ocr.types import Mat
from .base import DeviceScenarioBase
from .extractor import DeviceRoisExtractor
from .masker import DeviceRoisMasker
class DeviceOcr:
class DeviceScenario(DeviceScenarioBase):
def __init__(
self,
extractor: DeviceRoisExtractor,
masker: DeviceRoisMasker,
knn_model: cv2.ml.KNearest,
phash_db: ImagePhashDatabase,
knn_provider: OcrKNearestTextProvider,
image_id_provider: ImageIdProvider,
):
self.extractor = extractor
self.masker = masker
self.knn_model = knn_model
self.phash_db = phash_db
self.knn_provider = knn_provider
self.image_id_provider = image_id_provider
def pfl(self, roi_gray: Mat, factor: float = 1.25):
contours, _ = cv2.findContours(
roi_gray, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE
)
filtered_contours = [c for c in contours if cv2.contourArea(c) >= 5 * factor]
rects = [cv2.boundingRect(c) for c in filtered_contours]
rects = FixRects.connect_broken(rects, roi_gray.shape[1], roi_gray.shape[0])
def contour_filter(cnt):
return cv2.contourArea(cnt) >= 5 * factor
filtered_rects = [r for r in rects if r[2] >= 5 * factor and r[3] >= 6 * factor]
filtered_rects = FixRects.split_connected(roi_gray, filtered_rects)
filtered_rects = sorted(filtered_rects, key=lambda r: r[0])
contours = self.knn_provider.contours(roi_gray)
contours_filtered = self.knn_provider.contours(
roi_gray,
contours_filter=contour_filter,
)
roi_ocr = roi_gray.copy()
filtered_contours_flattened = {tuple(c.flatten()) for c in filtered_contours}
contours_filtered_flattened = {tuple(c.flatten()) for c in contours_filtered}
for contour in contours:
if tuple(contour.flatten()) in filtered_contours_flattened:
if tuple(contour.flatten()) in contours_filtered_flattened:
continue
roi_ocr = cv2.fillPoly(roi_ocr, [contour], [0])
digit_rois = [
resize_fill_square(crop_xywh(roi_ocr, r), 20) for r in filtered_rects
]
samples = preprocess_hog(digit_rois)
return ocr_digit_samples_knn(samples, self.knn_model)
ocr_result = self.knn_provider.result(
roi_ocr,
contours_filter=lambda cnt: cv2.contourArea(cnt) >= 5 * factor,
rects_filter=lambda rect: rect[2] >= 5 * factor and rect[3] >= 6 * factor,
)
return int(ocr_result) if ocr_result else 0
def pure(self):
return self.pfl(self.masker.pure(self.extractor.pure))
@ -65,13 +63,14 @@ class DeviceOcr:
def score(self):
roi = self.masker.score(self.extractor.score)
contours, _ = cv2.findContours(roi, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
contours = self.knn_provider.contours(roi)
for contour in contours:
if (
cv2.boundingRect(contour)[3] < roi.shape[0] * 0.6
): # h < score_component_h * 0.6
roi = cv2.fillPoly(roi, [contour], [0])
return ocr_digits_by_contour_knn(roi, self.knn_model)
ocr_result = self.knn_provider.result(roi)
return int(ocr_result) if ocr_result else 0
def rating_class(self):
roi = self.extractor.rating_class
@ -85,9 +84,10 @@ class DeviceOcr:
return max(enumerate(results), key=lambda i: np.count_nonzero(i[1]))[0]
def max_recall(self):
return ocr_digits_by_contour_knn(
self.masker.max_recall(self.extractor.max_recall), self.knn_model
ocr_result = self.knn_provider.result(
self.masker.max_recall(self.extractor.max_recall),
)
return int(ocr_result) if ocr_result else None
def clear_status(self):
roi = self.extractor.clear_status
@ -99,20 +99,18 @@ class DeviceOcr:
]
return max(enumerate(results), key=lambda i: np.count_nonzero(i[1]))[0]
def lookup_song_id(self):
return self.phash_db.lookup_jacket(
cv2.cvtColor(self.extractor.jacket, cv2.COLOR_BGR2GRAY)
def song_id_results(self):
return self.image_id_provider.results(
cv2.cvtColor(self.extractor.jacket, cv2.COLOR_BGR2GRAY),
ImageCategory.JACKET,
)
def song_id(self):
return self.lookup_song_id()[0]
@staticmethod
def preprocess_char_icon(img_gray: Mat):
h, w = img_gray.shape[:2]
img = cv2.copyMakeBorder(img_gray, max(w - h, 0), 0, 0, 0, cv2.BORDER_REPLICATE)
h, w = img.shape[:2]
img = cv2.fillPoly(
return cv2.fillPoly(
img,
[
np.array([[0, 0], [round(w / 2), 0], [0, round(h / 2)]], np.int32),
@ -120,21 +118,18 @@ class DeviceOcr:
np.array([[0, h], [round(w / 2), h], [0, round(h / 2)]], np.int32),
np.array([[w, h], [round(w / 2), h], [w, round(h / 2)]], np.int32),
],
(128),
(128,),
)
return img
def lookup_partner_id(self):
return self.phash_db.lookup_partner_icon(
def partner_id_results(self):
return self.image_id_provider.results(
self.preprocess_char_icon(
cv2.cvtColor(self.extractor.partner_icon, cv2.COLOR_BGR2GRAY)
)
cv2.cvtColor(self.extractor.partner_icon, cv2.COLOR_BGR2GRAY),
),
ImageCategory.PARTNER_ICON,
)
def partner_id(self):
return self.lookup_partner_id()[0]
def ocr(self) -> DeviceOcrResult:
def result(self):
rating_class = self.rating_class()
pure = self.pure()
far = self.far()
@ -143,20 +138,18 @@ class DeviceOcr:
max_recall = self.max_recall()
clear_status = self.clear_status()
hash_len = self.phash_db.hash_size**2
song_id, song_id_distance = self.lookup_song_id()
partner_id, partner_id_distance = self.lookup_partner_id()
song_id_results = self.song_id_results()
partner_id_results = self.partner_id_results()
return DeviceOcrResult(
return OcrScenarioResult(
song_id=song_id_results[0].image_id,
song_id_results=song_id_results,
rating_class=rating_class,
pure=pure,
far=far,
lost=lost,
score=score,
max_recall=max_recall,
song_id=song_id,
song_id_possibility=1 - song_id_distance / hash_len,
partner_id_results=partner_id_results,
clear_status=clear_status,
partner_id=partner_id,
partner_id_possibility=1 - partner_id_distance / hash_len,
)

View File

@ -0,0 +1,9 @@
from .auto import DeviceRoisMaskerAuto, DeviceRoisMaskerAutoT1, DeviceRoisMaskerAutoT2
from .base import DeviceRoisMasker
__all__ = [
"DeviceRoisMasker",
"DeviceRoisMaskerAuto",
"DeviceRoisMaskerAutoT1",
"DeviceRoisMaskerAutoT2",
]

View File

@ -1,17 +1,18 @@
import cv2
import numpy as np
from ....types import Mat
from .common import DeviceRoisMasker
from arcaea_offline_ocr.types import Mat
from .base import DeviceRoisMasker
class DeviceRoisMaskerAuto(DeviceRoisMasker):
# pylint: disable=abstract-method
@staticmethod
def mask_bgr_in_hsv(roi_bgr: Mat, hsv_lower: Mat, hsv_upper: Mat):
return cv2.inRange(
cv2.cvtColor(roi_bgr, cv2.COLOR_BGR2HSV), hsv_lower, hsv_upper
cv2.cvtColor(roi_bgr, cv2.COLOR_BGR2HSV),
hsv_lower,
hsv_upper,
)
@ -101,25 +102,33 @@ class DeviceRoisMaskerAutoT1(DeviceRoisMaskerAuto):
@classmethod
def clear_status_track_lost(cls, roi_bgr: Mat) -> Mat:
return cls.mask_bgr_in_hsv(
roi_bgr, cls.TRACK_LOST_HSV_MIN, cls.TRACK_LOST_HSV_MAX
roi_bgr,
cls.TRACK_LOST_HSV_MIN,
cls.TRACK_LOST_HSV_MAX,
)
@classmethod
def clear_status_track_complete(cls, roi_bgr: Mat) -> Mat:
return cls.mask_bgr_in_hsv(
roi_bgr, cls.TRACK_COMPLETE_HSV_MIN, cls.TRACK_COMPLETE_HSV_MAX
roi_bgr,
cls.TRACK_COMPLETE_HSV_MIN,
cls.TRACK_COMPLETE_HSV_MAX,
)
@classmethod
def clear_status_full_recall(cls, roi_bgr: Mat) -> Mat:
return cls.mask_bgr_in_hsv(
roi_bgr, cls.FULL_RECALL_HSV_MIN, cls.FULL_RECALL_HSV_MAX
roi_bgr,
cls.FULL_RECALL_HSV_MIN,
cls.FULL_RECALL_HSV_MAX,
)
@classmethod
def clear_status_pure_memory(cls, roi_bgr: Mat) -> Mat:
return cls.mask_bgr_in_hsv(
roi_bgr, cls.PURE_MEMORY_HSV_MIN, cls.PURE_MEMORY_HSV_MAX
roi_bgr,
cls.PURE_MEMORY_HSV_MIN,
cls.PURE_MEMORY_HSV_MAX,
)
@ -203,29 +212,39 @@ class DeviceRoisMaskerAutoT2(DeviceRoisMaskerAuto):
@classmethod
def max_recall(cls, roi_bgr: Mat) -> Mat:
return cls.mask_bgr_in_hsv(
roi_bgr, cls.MAX_RECALL_HSV_MIN, cls.MAX_RECALL_HSV_MAX
roi_bgr,
cls.MAX_RECALL_HSV_MIN,
cls.MAX_RECALL_HSV_MAX,
)
@classmethod
def clear_status_track_lost(cls, roi_bgr: Mat) -> Mat:
return cls.mask_bgr_in_hsv(
roi_bgr, cls.TRACK_LOST_HSV_MIN, cls.TRACK_LOST_HSV_MAX
roi_bgr,
cls.TRACK_LOST_HSV_MIN,
cls.TRACK_LOST_HSV_MAX,
)
@classmethod
def clear_status_track_complete(cls, roi_bgr: Mat) -> Mat:
return cls.mask_bgr_in_hsv(
roi_bgr, cls.TRACK_COMPLETE_HSV_MIN, cls.TRACK_COMPLETE_HSV_MAX
roi_bgr,
cls.TRACK_COMPLETE_HSV_MIN,
cls.TRACK_COMPLETE_HSV_MAX,
)
@classmethod
def clear_status_full_recall(cls, roi_bgr: Mat) -> Mat:
return cls.mask_bgr_in_hsv(
roi_bgr, cls.FULL_RECALL_HSV_MIN, cls.FULL_RECALL_HSV_MAX
roi_bgr,
cls.FULL_RECALL_HSV_MIN,
cls.FULL_RECALL_HSV_MAX,
)
@classmethod
def clear_status_pure_memory(cls, roi_bgr: Mat) -> Mat:
return cls.mask_bgr_in_hsv(
roi_bgr, cls.PURE_MEMORY_HSV_MIN, cls.PURE_MEMORY_HSV_MAX
roi_bgr,
cls.PURE_MEMORY_HSV_MIN,
cls.PURE_MEMORY_HSV_MAX,
)

View File

@ -0,0 +1,61 @@
from abc import ABC, abstractmethod
from arcaea_offline_ocr.types import Mat
class DeviceRoisMasker(ABC):
@classmethod
@abstractmethod
def pure(cls, roi_bgr: Mat) -> Mat: ...
@classmethod
@abstractmethod
def far(cls, roi_bgr: Mat) -> Mat: ...
@classmethod
@abstractmethod
def lost(cls, roi_bgr: Mat) -> Mat: ...
@classmethod
@abstractmethod
def score(cls, roi_bgr: Mat) -> Mat: ...
@classmethod
@abstractmethod
def rating_class_pst(cls, roi_bgr: Mat) -> Mat: ...
@classmethod
@abstractmethod
def rating_class_prs(cls, roi_bgr: Mat) -> Mat: ...
@classmethod
@abstractmethod
def rating_class_ftr(cls, roi_bgr: Mat) -> Mat: ...
@classmethod
@abstractmethod
def rating_class_byd(cls, roi_bgr: Mat) -> Mat: ...
@classmethod
@abstractmethod
def rating_class_etr(cls, roi_bgr: Mat) -> Mat: ...
@classmethod
@abstractmethod
def max_recall(cls, roi_bgr: Mat) -> Mat: ...
@classmethod
@abstractmethod
def clear_status_track_lost(cls, roi_bgr: Mat) -> Mat: ...
@classmethod
@abstractmethod
def clear_status_track_complete(cls, roi_bgr: Mat) -> Mat: ...
@classmethod
@abstractmethod
def clear_status_full_recall(cls, roi_bgr: Mat) -> Mat: ...
@classmethod
@abstractmethod
def clear_status_pure_memory(cls, roi_bgr: Mat) -> Mat: ...

View File

@ -0,0 +1,9 @@
from .auto import DeviceRoisAuto, DeviceRoisAutoT1, DeviceRoisAutoT2
from .base import DeviceRois
__all__ = [
"DeviceRois",
"DeviceRoisAuto",
"DeviceRoisAutoT1",
"DeviceRoisAutoT2",
]

View File

@ -1,6 +1,6 @@
from .common import DeviceRois
from arcaea_offline_ocr.types import XYWHRect
__all__ = ["DeviceRoisAuto", "DeviceRoisAutoT1", "DeviceRoisAutoT2"]
from .base import DeviceRois
class DeviceRoisAuto(DeviceRois):
@ -50,7 +50,7 @@ class DeviceRoisAutoT1(DeviceRoisAuto):
@property
def pure(self):
return (
return XYWHRect(
self.pfl_x,
self.layout_area_h_mid + 110 * self.factor,
self.pfl_w,
@ -59,7 +59,7 @@ class DeviceRoisAutoT1(DeviceRoisAuto):
@property
def far(self):
return (
return XYWHRect(
self.pfl_x,
self.pure[1] + self.pure[3] + 12 * self.factor,
self.pfl_w,
@ -68,7 +68,7 @@ class DeviceRoisAutoT1(DeviceRoisAuto):
@property
def lost(self):
return (
return XYWHRect(
self.pfl_x,
self.far[1] + self.far[3] + 10 * self.factor,
self.pfl_w,
@ -79,7 +79,7 @@ class DeviceRoisAutoT1(DeviceRoisAuto):
def score(self):
w = 280 * self.factor
h = 45 * self.factor
return (
return XYWHRect(
self.w_mid - w / 2,
self.layout_area_h_mid - 75 * self.factor - h,
w,
@ -88,7 +88,7 @@ class DeviceRoisAutoT1(DeviceRoisAuto):
@property
def rating_class(self):
return (
return XYWHRect(
self.w_mid - 610 * self.factor,
self.layout_area_h_mid - 180 * self.factor,
265 * self.factor,
@ -97,7 +97,7 @@ class DeviceRoisAutoT1(DeviceRoisAuto):
@property
def max_recall(self):
return (
return XYWHRect(
self.w_mid - 465 * self.factor,
self.layout_area_h_mid - 215 * self.factor,
150 * self.factor,
@ -106,7 +106,7 @@ class DeviceRoisAutoT1(DeviceRoisAuto):
@property
def jacket(self):
return (
return XYWHRect(
self.w_mid - 610 * self.factor,
self.layout_area_h_mid - 143 * self.factor,
375 * self.factor,
@ -117,7 +117,7 @@ class DeviceRoisAutoT1(DeviceRoisAuto):
def clear_status(self):
w = 550 * self.factor
h = 60 * self.factor
return (
return XYWHRect(
self.w_mid - w / 2,
self.layout_area_h_mid - 155 * self.factor - h,
w * 0.4,
@ -128,7 +128,7 @@ class DeviceRoisAutoT1(DeviceRoisAuto):
def partner_icon(self):
w = 90 * self.factor
h = 75 * self.factor
return (self.w_mid - w / 2, 0, w, h)
return XYWHRect(self.w_mid - w / 2, 0, w, h)
class DeviceRoisAutoT2(DeviceRoisAuto):
@ -174,7 +174,7 @@ class DeviceRoisAutoT2(DeviceRoisAuto):
@property
def pure(self):
return (
return XYWHRect(
self.pfl_x,
self.layout_area_h_mid + 175 * self.factor,
self.pfl_w,
@ -183,7 +183,7 @@ class DeviceRoisAutoT2(DeviceRoisAuto):
@property
def far(self):
return (
return XYWHRect(
self.pfl_x,
self.pure[1] + self.pure[3] + 30 * self.factor,
self.pfl_w,
@ -192,7 +192,7 @@ class DeviceRoisAutoT2(DeviceRoisAuto):
@property
def lost(self):
return (
return XYWHRect(
self.pfl_x,
self.far[1] + self.far[3] + 35 * self.factor,
self.pfl_w,
@ -203,7 +203,7 @@ class DeviceRoisAutoT2(DeviceRoisAuto):
def score(self):
w = 420 * self.factor
h = 70 * self.factor
return (
return XYWHRect(
self.w_mid - w / 2,
self.layout_area_h_mid - 110 * self.factor - h,
w,
@ -212,7 +212,7 @@ class DeviceRoisAutoT2(DeviceRoisAuto):
@property
def rating_class(self):
return (
return XYWHRect(
max(0, self.w_mid - 965 * self.factor),
self.layout_area_h_mid - 330 * self.factor,
350 * self.factor,
@ -221,7 +221,7 @@ class DeviceRoisAutoT2(DeviceRoisAuto):
@property
def max_recall(self):
return (
return XYWHRect(
self.w_mid - 625 * self.factor,
self.layout_area_h_mid - 275 * self.factor,
150 * self.factor,
@ -230,7 +230,7 @@ class DeviceRoisAutoT2(DeviceRoisAuto):
@property
def jacket(self):
return (
return XYWHRect(
self.w_mid - 915 * self.factor,
self.layout_area_h_mid - 215 * self.factor,
565 * self.factor,
@ -241,7 +241,7 @@ class DeviceRoisAutoT2(DeviceRoisAuto):
def clear_status(self):
w = 825 * self.factor
h = 90 * self.factor
return (
return XYWHRect(
self.w_mid - w / 2,
self.layout_area_h_mid - 235 * self.factor - h,
w * 0.4,
@ -252,4 +252,4 @@ class DeviceRoisAutoT2(DeviceRoisAuto):
def partner_icon(self):
w = 135 * self.factor
h = 110 * self.factor
return (self.w_mid - w / 2, 0, w, h)
return XYWHRect(self.w_mid - w / 2, 0, w, h)

View File

@ -0,0 +1,33 @@
from abc import ABC, abstractmethod
from arcaea_offline_ocr.types import XYWHRect
class DeviceRois(ABC):
@property
@abstractmethod
def pure(self) -> XYWHRect: ...
@property
@abstractmethod
def far(self) -> XYWHRect: ...
@property
@abstractmethod
def lost(self) -> XYWHRect: ...
@property
@abstractmethod
def score(self) -> XYWHRect: ...
@property
@abstractmethod
def rating_class(self) -> XYWHRect: ...
@property
@abstractmethod
def max_recall(self) -> XYWHRect: ...
@property
@abstractmethod
def jacket(self) -> XYWHRect: ...
@property
@abstractmethod
def clear_status(self) -> XYWHRect: ...
@property
@abstractmethod
def partner_icon(self) -> XYWHRect: ...

View File

@ -25,12 +25,18 @@ class XYWHRect(NamedTuple):
def __add__(self, other):
if not isinstance(other, (list, tuple)) or len(other) != 4:
raise TypeError()
raise TypeError
return self.__class__(*[a + b for a, b in zip(self, other)])
def __sub__(self, other):
if not isinstance(other, (list, tuple)) or len(other) != 4:
raise TypeError()
raise TypeError
return self.__class__(*[a - b for a, b in zip(self, other)])
def __mul__(self, other):
if not isinstance(other, (int, float)):
raise TypeError
return self.__class__(*[v * other for v in self])

View File

@ -1,11 +1,6 @@
from collections.abc import Iterable
from typing import TypeVar, overload
import cv2
import numpy as np
from .types import XYWHRect
__all__ = ["imread_unicode"]
@ -13,27 +8,3 @@ def imread_unicode(filepath: str, flags: int = cv2.IMREAD_UNCHANGED):
# https://stackoverflow.com/a/57872297/16484891
# CC BY-SA 4.0
return cv2.imdecode(np.fromfile(filepath, dtype=np.uint8), flags)
@overload
def apply_factor(item: int, factor: float) -> float: ...
@overload
def apply_factor(item: float, factor: float) -> float: ...
T = TypeVar("T", bound=Iterable)
@overload
def apply_factor(item: T, factor: float) -> T: ...
def apply_factor(item, factor: float):
if isinstance(item, (int, float)):
return item * factor
if isinstance(item, XYWHRect):
return item.__class__(*[i * factor for i in item])
if isinstance(item, Iterable):
return item.__class__([i * factor for i in item])