2 Commits

Author SHA1 Message Date
2b18906935 refactor!: image hash database provider 2025-06-22 01:28:59 +08:00
abfd37dbef refactor!: OCR text result provider 2025-06-22 00:32:31 +08:00
14 changed files with 492 additions and 405 deletions

View File

@ -1,4 +1,3 @@
from .crop import *
from .device import *
from .ocr import *
from .utils import *

View File

@ -4,12 +4,6 @@ import cv2
import numpy as np
from ....crop import crop_xywh
from ....ocr import (
FixRects,
ocr_digits_by_contour_knn,
preprocess_hog,
resize_fill_square,
)
from ....phash_db import ImagePhashDatabase
from ....types import Mat
from ...shared import B30OcrResultItem
@ -28,36 +22,21 @@ from .colors import (
PURE_BG_MIN_HSV,
)
from .rois import ChieriBotV4Rois
from ....providers.knn import OcrKNearestTextProvider
class ChieriBotV4Ocr:
def __init__(
self,
score_knn: cv2.ml.KNearest,
pfl_knn: cv2.ml.KNearest,
score_knn_provider: OcrKNearestTextProvider,
pfl_knn_provider: OcrKNearestTextProvider,
phash_db: ImagePhashDatabase,
factor: float = 1.0,
):
self.__score_knn = score_knn
self.__pfl_knn = pfl_knn
self.__phash_db = phash_db
self.__rois = ChieriBotV4Rois(factor)
@property
def score_knn(self):
return self.__score_knn
@score_knn.setter
def score_knn(self, knn_digits_model: cv2.ml.KNearest):
self.__score_knn = knn_digits_model
@property
def pfl_knn(self):
return self.__pfl_knn
@pfl_knn.setter
def pfl_knn(self, knn_digits_model: cv2.ml.KNearest):
self.__pfl_knn = knn_digits_model
self.pfl_knn_provider = pfl_knn_provider
self.score_knn_provider = score_knn_provider
@property
def phash_db(self):
@ -125,7 +104,9 @@ class ChieriBotV4Ocr:
if rect[3] > score_roi.shape[0] * 0.5:
continue
score_roi = cv2.fillPoly(score_roi, [contour], 0)
return ocr_digits_by_contour_knn(score_roi, self.score_knn)
ocr_result = self.score_knn_provider.result(score_roi)
return int(ocr_result) if ocr_result else 0
def find_pfl_rects(
self, component_pfl_processed: Mat
@ -203,25 +184,9 @@ class ChieriBotV4Ocr:
pure_far_lost = []
for pfl_roi_rect in pfl_rects:
roi = crop_xywh(pfl_roi, pfl_roi_rect)
digit_contours, _ = cv2.findContours(
roi, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE
)
digit_rects = [cv2.boundingRect(c) for c in digit_contours]
digit_rects = FixRects.connect_broken(
digit_rects, roi.shape[1], roi.shape[0]
)
digit_rects = FixRects.split_connected(roi, digit_rects)
digit_rects = sorted(digit_rects, key=lambda r: r[0])
digits = []
for digit_rect in digit_rects:
digit = crop_xywh(roi, digit_rect)
digit = resize_fill_square(digit, 20)
digits.append(digit)
samples = preprocess_hog(digits)
result = self.pfl_knn_provider.result(roi)
pure_far_lost.append(int(result) if result else None)
_, results, _, _ = self.pfl_knn.findNearest(samples, 4)
results = [str(int(i)) for i in results.ravel()]
pure_far_lost.append(int("".join(results)))
return tuple(pure_far_lost)
except Exception:
return (None, None, None)

View File

@ -0,0 +1,6 @@
from .ihdb import ImageHashDatabaseBuildTask, ImageHashesDatabaseBuilder
__all__ = [
"ImageHashDatabaseBuildTask",
"ImageHashesDatabaseBuilder",
]

View File

@ -0,0 +1,112 @@
from dataclasses import dataclass
from datetime import datetime, timezone
from typing import TYPE_CHECKING, Callable, List
import cv2
from arcaea_offline_ocr.core import hashers
from arcaea_offline_ocr.providers import ImageCategory
from arcaea_offline_ocr.providers.ihdb import (
PROP_KEY_BUILT_AT,
PROP_KEY_HASH_SIZE,
PROP_KEY_HIGH_FREQ_FACTOR,
ImageHashDatabaseIdProvider,
ImageHashType,
)
if TYPE_CHECKING:
from sqlite3 import Connection
from arcaea_offline_ocr.types import Mat
def _default_imread_gray(image_path: str):
return cv2.cvtColor(cv2.imread(image_path, cv2.IMREAD_COLOR), cv2.COLOR_BGR2GRAY)
@dataclass
class ImageHashDatabaseBuildTask:
image_path: str
image_id: str
category: ImageCategory
imread_function: Callable[[str], "Mat"] = _default_imread_gray
@dataclass
class _ImageHash:
image_id: str
category: ImageCategory
image_hash_type: ImageHashType
hash: bytes
class ImageHashesDatabaseBuilder:
@staticmethod
def __insert_property(conn: "Connection", key: str, value: str):
return conn.execute(
"INSERT INTO properties (key, value) VALUES (?, ?)",
(key, value),
)
@classmethod
def build(
cls,
conn: "Connection",
tasks: List[ImageHashDatabaseBuildTask],
*,
hash_size: int = 16,
high_freq_factor: int = 4,
):
hashes: List[_ImageHash] = []
for task in tasks:
img_gray = task.imread_function(task.image_path)
for hash_type, hash_mat in [
(
ImageHashType.AVERAGE,
hashers.average(img_gray, hash_size),
),
(
ImageHashType.DCT,
hashers.dct(img_gray, hash_size, high_freq_factor),
),
(
ImageHashType.DIFFERENCE,
hashers.difference(img_gray, hash_size),
),
]:
hashes.append(
_ImageHash(
image_id=task.image_id,
image_hash_type=hash_type,
category=task.category,
hash=ImageHashDatabaseIdProvider.hash_mat_to_bytes(hash_mat),
)
)
conn.execute("CREATE TABLE properties (`key` VARCHAR, `value` VARCHAR)")
conn.execute(
"""CREATE TABLE hashes (
`id` VARCHAR,
`category` INTEGER,
`hash_type` INTEGER,
`hash` BLOB
)"""
)
now = datetime.now(tz=timezone.utc)
timestamp = int(now.timestamp() * 1000)
cls.__insert_property(conn, PROP_KEY_HASH_SIZE, str(hash_size))
cls.__insert_property(conn, PROP_KEY_HIGH_FREQ_FACTOR, str(high_freq_factor))
cls.__insert_property(conn, PROP_KEY_BUILT_AT, str(timestamp))
conn.executemany(
"INSERT INTO hashes (`id`, `category`, `hash_type`, `hash`) VALUES (?, ?, ?, ?)",
[
(it.image_id, it.category.value, it.image_hash_type.value, it.hash)
for it in hashes
],
)
conn.commit()

View File

@ -1,18 +0,0 @@
from .builder import ImageHashesDatabaseBuilder
from .index import ImageHashesDatabase, ImageHashesDatabasePropertyMissingError
from .models import (
ImageHashBuildTask,
ImageHashHashType,
ImageHashResult,
ImageHashCategory,
)
__all__ = [
"ImageHashesDatabase",
"ImageHashesDatabasePropertyMissingError",
"ImageHashHashType",
"ImageHashResult",
"ImageHashCategory",
"ImageHashesDatabaseBuilder",
"ImageHashBuildTask",
]

View File

@ -1,85 +0,0 @@
import logging
from datetime import datetime, timezone
from sqlite3 import Connection
from typing import List
from arcaea_offline_ocr.core import hashers
from .index import ImageHashesDatabase
from .models import ImageHash, ImageHashBuildTask, ImageHashHashType
logger = logging.getLogger(__name__)
class ImageHashesDatabaseBuilder:
@staticmethod
def __insert_property(conn: Connection, key: str, value: str):
return conn.execute(
"INSERT INTO properties (key, value) VALUES (?, ?)",
(key, value),
)
@classmethod
def build(
cls,
conn: Connection,
tasks: List[ImageHashBuildTask],
*,
hash_size: int = 16,
high_freq_factor: int = 4,
):
rows: List[ImageHash] = []
for task in tasks:
try:
img_gray = task.imread_function(task.image_path)
for hash_type, hash_mat in [
(
ImageHashHashType.AVERAGE,
hashers.average(img_gray, hash_size),
),
(
ImageHashHashType.DCT,
hashers.dct(img_gray, hash_size, high_freq_factor),
),
(
ImageHashHashType.DIFFERENCE,
hashers.difference(img_gray, hash_size),
),
]:
rows.append(
ImageHash(
hash_type=hash_type,
category=task.category,
label=task.label,
hash=ImageHashesDatabase.hash_mat_to_bytes(hash_mat),
)
)
except Exception:
logger.exception("Error processing task %r", task)
conn.execute("CREATE TABLE properties (`key` VARCHAR, `value` VARCHAR)")
conn.execute(
"CREATE TABLE hashes (`hash_type` INTEGER, `category` INTEGER, `label` VARCHAR, `hash` BLOB)"
)
now = datetime.now(tz=timezone.utc)
timestamp = int(now.timestamp() * 1000)
cls.__insert_property(conn, ImageHashesDatabase.KEY_HASH_SIZE, str(hash_size))
cls.__insert_property(
conn, ImageHashesDatabase.KEY_HIGH_FREQ_FACTOR, str(high_freq_factor)
)
cls.__insert_property(
conn, ImageHashesDatabase.KEY_BUILT_TIMESTAMP, str(timestamp)
)
conn.executemany(
"INSERT INTO hashes (hash_type, category, label, hash) VALUES (?, ?, ?, ?)",
[
(row.hash_type.value, row.category.value, row.label, row.hash)
for row in rows
],
)
conn.commit()

View File

@ -1,144 +0,0 @@
import sqlite3
from datetime import datetime, timezone
from typing import Any, Callable, List, Optional, TypeVar
from arcaea_offline_ocr.core import hashers
from arcaea_offline_ocr.types import Mat
from .models import ImageHashHashType, ImageHashResult, ImageHashCategory
T = TypeVar("T")
def _sql_hamming_distance(hash1: bytes, hash2: bytes):
assert len(hash1) == len(hash2), "hash size does not match!"
count = sum(1 for byte1, byte2 in zip(hash1, hash2) if byte1 != byte2)
return count
class ImageHashesDatabasePropertyMissingError(Exception):
pass
class ImageHashesDatabase:
KEY_HASH_SIZE = "hash_size"
KEY_HIGH_FREQ_FACTOR = "high_freq_factor"
KEY_BUILT_TIMESTAMP = "built_timestamp"
def __init__(self, conn: sqlite3.Connection):
self.conn = conn
self.conn.create_function("HAMMING_DISTANCE", 2, _sql_hamming_distance)
self._hash_size: int = -1
self._high_freq_factor: int = -1
self._built_time: Optional[datetime] = None
self._hashes_count = {
ImageHashCategory.JACKET: 0,
ImageHashCategory.PARTNER_ICON: 0,
}
self._hash_length: int = -1
self._initialize()
@property
def hash_size(self):
return self._hash_size
@property
def high_freq_factor(self):
return self._high_freq_factor
@property
def hash_length(self):
return self._hash_length
def _initialize(self):
def query_property(key, convert_func: Callable[[Any], T]) -> Optional[T]:
result = self.conn.execute(
"SELECT value FROM properties WHERE key = ?",
(key,),
).fetchone()
return convert_func(result[0]) if result is not None else None
def set_hashes_count(category: ImageHashCategory):
self._hashes_count[category] = self.conn.execute(
"SELECT COUNT(DISTINCT label) FROM hashes WHERE category = ?",
(category.value,),
).fetchone()[0]
hash_size = query_property(self.KEY_HASH_SIZE, lambda x: int(x))
if hash_size is None:
raise ImageHashesDatabasePropertyMissingError("hash_size")
self._hash_size = hash_size
high_freq_factor = query_property(self.KEY_HIGH_FREQ_FACTOR, lambda x: int(x))
if high_freq_factor is None:
raise ImageHashesDatabasePropertyMissingError("high_freq_factor")
self._high_freq_factor = high_freq_factor
self._built_time = query_property(
self.KEY_BUILT_TIMESTAMP,
lambda ts: datetime.fromtimestamp(int(ts) / 1000, tz=timezone.utc),
)
set_hashes_count(ImageHashCategory.JACKET)
set_hashes_count(ImageHashCategory.PARTNER_ICON)
self._hash_length = self._hash_size**2
def lookup_hash(
self, category: ImageHashCategory, hash_type: ImageHashHashType, hash: bytes
) -> List[ImageHashResult]:
cursor = self.conn.execute(
"SELECT"
" label,"
" HAMMING_DISTANCE(hash, ?) AS distance"
" FROM hashes"
" WHERE category = ? AND hash_type = ?"
" ORDER BY distance ASC LIMIT 10",
(hash, category.value, hash_type.value),
)
results = []
for label, distance in cursor.fetchall():
results.append(
ImageHashResult(
hash_type=hash_type,
category=category,
label=label,
confidence=(self.hash_length - distance) / self.hash_length,
)
)
return results
@staticmethod
def hash_mat_to_bytes(hash: Mat) -> bytes:
return bytes([255 if b else 0 for b in hash.flatten()])
def identify_image(self, category: ImageHashCategory, img) -> List[ImageHashResult]:
results = []
ahash = hashers.average(img, self.hash_size)
dhash = hashers.difference(img, self.hash_size)
phash = hashers.dct(img, self.hash_size, self.high_freq_factor)
results.extend(
self.lookup_hash(
category, ImageHashHashType.AVERAGE, self.hash_mat_to_bytes(ahash)
)
)
results.extend(
self.lookup_hash(
category, ImageHashHashType.DIFFERENCE, self.hash_mat_to_bytes(dhash)
)
)
results.extend(
self.lookup_hash(
category, ImageHashHashType.DCT, self.hash_mat_to_bytes(phash)
)
)
return results

View File

@ -1,46 +0,0 @@
import dataclasses
from enum import IntEnum
from typing import Callable
import cv2
from arcaea_offline_ocr.types import Mat
class ImageHashHashType(IntEnum):
AVERAGE = 0
DIFFERENCE = 1
DCT = 2
class ImageHashCategory(IntEnum):
JACKET = 0
PARTNER_ICON = 1
@dataclasses.dataclass
class ImageHash:
hash_type: ImageHashHashType
category: ImageHashCategory
label: str
hash: bytes
@dataclasses.dataclass
class ImageHashResult:
hash_type: ImageHashHashType
category: ImageHashCategory
label: str
confidence: float
def _default_imread_gray(image_path: str):
return cv2.cvtColor(cv2.imread(image_path, cv2.IMREAD_COLOR), cv2.COLOR_BGR2GRAY)
@dataclasses.dataclass
class ImageHashBuildTask:
image_path: str
category: ImageHashCategory
label: str
imread_function: Callable[[str], Mat] = _default_imread_gray

View File

@ -5,10 +5,10 @@ from typing import Optional
@dataclass
class DeviceOcrResult:
rating_class: int
pure: int
far: int
lost: int
score: int
pure: Optional[int] = None
far: Optional[int] = None
lost: Optional[int] = None
max_recall: Optional[int] = None
song_id: Optional[str] = None
song_id_possibility: Optional[float] = None

View File

@ -1,15 +1,8 @@
import cv2
import numpy as np
from ..crop import crop_xywh
from ..ocr import (
FixRects,
ocr_digit_samples_knn,
ocr_digits_by_contour_knn,
preprocess_hog,
resize_fill_square,
)
from ..phash_db import ImagePhashDatabase
from ..providers.knn import OcrKNearestTextProvider
from ..types import Mat
from .common import DeviceOcrResult
from .rois.extractor import DeviceRoisExtractor
@ -21,38 +14,37 @@ class DeviceOcr:
self,
extractor: DeviceRoisExtractor,
masker: DeviceRoisMasker,
knn_model: cv2.ml.KNearest,
knn_provider: OcrKNearestTextProvider,
phash_db: ImagePhashDatabase,
):
self.extractor = extractor
self.masker = masker
self.knn_model = knn_model
self.knn_provider = knn_provider
self.phash_db = phash_db
def pfl(self, roi_gray: Mat, factor: float = 1.25):
contours, _ = cv2.findContours(
roi_gray, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE
)
filtered_contours = [c for c in contours if cv2.contourArea(c) >= 5 * factor]
rects = [cv2.boundingRect(c) for c in filtered_contours]
rects = FixRects.connect_broken(rects, roi_gray.shape[1], roi_gray.shape[0])
def contour_filter(cnt):
return cv2.contourArea(cnt) >= 5 * factor
filtered_rects = [r for r in rects if r[2] >= 5 * factor and r[3] >= 6 * factor]
filtered_rects = FixRects.split_connected(roi_gray, filtered_rects)
filtered_rects = sorted(filtered_rects, key=lambda r: r[0])
contours = self.knn_provider.contours(roi_gray)
contours_filtered = self.knn_provider.contours(
roi_gray, contours_filter=contour_filter
)
roi_ocr = roi_gray.copy()
filtered_contours_flattened = {tuple(c.flatten()) for c in filtered_contours}
contours_filtered_flattened = {tuple(c.flatten()) for c in contours_filtered}
for contour in contours:
if tuple(contour.flatten()) in filtered_contours_flattened:
if tuple(contour.flatten()) in contours_filtered_flattened:
continue
roi_ocr = cv2.fillPoly(roi_ocr, [contour], [0])
digit_rois = [
resize_fill_square(crop_xywh(roi_ocr, r), 20) for r in filtered_rects
]
samples = preprocess_hog(digit_rois)
return ocr_digit_samples_knn(samples, self.knn_model)
ocr_result = self.knn_provider.result(
roi_ocr,
contours_filter=lambda cnt: cv2.contourArea(cnt) >= 5 * factor,
rects_filter=lambda rect: rect[2] >= 5 * factor and rect[3] >= 6 * factor,
)
return int(ocr_result) if ocr_result else 0
def pure(self):
return self.pfl(self.masker.pure(self.extractor.pure))
@ -65,13 +57,14 @@ class DeviceOcr:
def score(self):
roi = self.masker.score(self.extractor.score)
contours, _ = cv2.findContours(roi, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
contours = self.knn_provider.contours(roi)
for contour in contours:
if (
cv2.boundingRect(contour)[3] < roi.shape[0] * 0.6
): # h < score_component_h * 0.6
roi = cv2.fillPoly(roi, [contour], [0])
return ocr_digits_by_contour_knn(roi, self.knn_model)
ocr_result = self.knn_provider.result(roi)
return int(ocr_result) if ocr_result else 0
def rating_class(self):
roi = self.extractor.rating_class
@ -85,9 +78,10 @@ class DeviceOcr:
return max(enumerate(results), key=lambda i: np.count_nonzero(i[1]))[0]
def max_recall(self):
return ocr_digits_by_contour_knn(
self.masker.max_recall(self.extractor.max_recall), self.knn_model
ocr_result = self.knn_provider.result(
self.masker.max_recall(self.extractor.max_recall)
)
return int(ocr_result) if ocr_result else None
def clear_status(self):
roi = self.extractor.clear_status

View File

@ -0,0 +1,12 @@
from .base import ImageCategory, ImageIdProvider, ImageIdProviderResult, OcrTextProvider
from .ihdb import ImageHashDatabaseIdProvider
from .knn import OcrKNearestTextProvider
__all__ = [
"ImageCategory",
"ImageHashDatabaseIdProvider",
"OcrKNearestTextProvider",
"ImageIdProvider",
"OcrTextProvider",
"ImageIdProviderResult",
]

View File

@ -0,0 +1,38 @@
from abc import ABC, abstractmethod
from dataclasses import dataclass
from enum import IntEnum
from typing import TYPE_CHECKING, Any, Sequence, Optional
if TYPE_CHECKING:
from ..types import Mat
class OcrTextProvider(ABC):
@abstractmethod
def result_raw(self, img: "Mat", /, *args, **kwargs) -> Any: ...
@abstractmethod
def result(self, img: "Mat", /, *args, **kwargs) -> Optional[str]: ...
class ImageCategory(IntEnum):
JACKET = 0
PARTNER_ICON = 1
@dataclass(kw_only=True)
class ImageIdProviderResult:
image_id: str
category: ImageCategory
confidence: float
class ImageIdProvider(ABC):
@abstractmethod
def result(
self, img: "Mat", category: ImageCategory, /, *args, **kwargs
) -> ImageIdProviderResult: ...
@abstractmethod
def results(
self, img: "Mat", category: ImageCategory, /, *args, **kwargs
) -> Sequence[ImageIdProviderResult]: ...

View File

@ -0,0 +1,194 @@
import sqlite3
from dataclasses import dataclass
from datetime import datetime, timezone
from enum import IntEnum
from typing import TYPE_CHECKING, Any, Callable, List, Optional, TypeVar
from arcaea_offline_ocr.core import hashers
from .base import ImageCategory, ImageIdProvider, ImageIdProviderResult
if TYPE_CHECKING:
from arcaea_offline_ocr.types import Mat
T = TypeVar("T")
PROP_KEY_HASH_SIZE = "hash_size"
PROP_KEY_HIGH_FREQ_FACTOR = "high_freq_factor"
PROP_KEY_BUILT_AT = "built_at"
def _sql_hamming_distance(hash1: bytes, hash2: bytes):
assert len(hash1) == len(hash2), "hash size does not match!"
count = sum(1 for byte1, byte2 in zip(hash1, hash2) if byte1 != byte2)
return count
class ImageHashType(IntEnum):
AVERAGE = 0
DIFFERENCE = 1
DCT = 2
@dataclass(kw_only=True)
class ImageHashDatabaseIdProviderResult(ImageIdProviderResult):
image_hash_type: ImageHashType
class MissingPropertiesError(Exception):
keys: List[str]
def __init__(self, keys, *args):
super().__init__(*args)
self.keys = keys
class ImageHashDatabaseIdProvider(ImageIdProvider):
def __init__(self, conn: sqlite3.Connection):
self.conn = conn
self.conn.create_function("HAMMING_DISTANCE", 2, _sql_hamming_distance)
self.properties = {
PROP_KEY_HASH_SIZE: -1,
PROP_KEY_HIGH_FREQ_FACTOR: -1,
PROP_KEY_BUILT_AT: None,
}
self._hashes_count = {
ImageCategory.JACKET: 0,
ImageCategory.PARTNER_ICON: 0,
}
self._hash_length: int = -1
self._initialize()
@property
def hash_size(self) -> int:
return self.properties[PROP_KEY_HASH_SIZE]
@property
def high_freq_factor(self) -> int:
return self.properties[PROP_KEY_HIGH_FREQ_FACTOR]
@property
def built_at(self) -> Optional[datetime]:
return self.properties.get(PROP_KEY_BUILT_AT)
@property
def hash_length(self):
return self._hash_length
def _initialize(self):
def get_property(key, converter: Callable[[Any], T]) -> Optional[T]:
result = self.conn.execute(
"SELECT value FROM properties WHERE key = ?",
(key,),
).fetchone()
return converter(result[0]) if result is not None else None
def set_hashes_count(category: ImageCategory):
self._hashes_count[category] = self.conn.execute(
"SELECT COUNT(DISTINCT `id`) FROM hashes WHERE category = ?",
(category.value,),
).fetchone()[0]
properties_converter_map = {
PROP_KEY_HASH_SIZE: lambda x: int(x),
PROP_KEY_HIGH_FREQ_FACTOR: lambda x: int(x),
PROP_KEY_BUILT_AT: lambda ts: datetime.fromtimestamp(
int(ts) / 1000, tz=timezone.utc
),
}
required_properties = [PROP_KEY_HASH_SIZE, PROP_KEY_HIGH_FREQ_FACTOR]
missing_properties = []
for property_key, converter in properties_converter_map.items():
value = get_property(property_key, converter)
if value is None:
if property_key in required_properties:
missing_properties.append(property_key)
continue
self.properties[property_key] = value
if missing_properties:
raise MissingPropertiesError(keys=missing_properties)
set_hashes_count(ImageCategory.JACKET)
set_hashes_count(ImageCategory.PARTNER_ICON)
self._hash_length = self.hash_size**2
def lookup_hash(
self, category: ImageCategory, hash_type: ImageHashType, hash: bytes
) -> List[ImageHashDatabaseIdProviderResult]:
cursor = self.conn.execute(
"""
SELECT
`id`,
HAMMING_DISTANCE(hash, ?) AS distance
FROM hashes
WHERE category = ? AND hash_type = ?
ORDER BY distance ASC LIMIT 10""",
(hash, category.value, hash_type.value),
)
results = []
for id_, distance in cursor.fetchall():
results.append(
ImageHashDatabaseIdProviderResult(
image_id=id_,
category=category,
confidence=(self.hash_length - distance) / self.hash_length,
image_hash_type=hash_type,
)
)
return results
@staticmethod
def hash_mat_to_bytes(hash: "Mat") -> bytes:
return bytes([255 if b else 0 for b in hash.flatten()])
def results(self, img: "Mat", category: ImageCategory, /):
results: List[ImageHashDatabaseIdProviderResult] = []
results.extend(
self.lookup_hash(
category,
ImageHashType.AVERAGE,
self.hash_mat_to_bytes(hashers.average(img, self.hash_size)),
)
)
results.extend(
self.lookup_hash(
category,
ImageHashType.DIFFERENCE,
self.hash_mat_to_bytes(hashers.difference(img, self.hash_size)),
)
)
results.extend(
self.lookup_hash(
category,
ImageHashType.DCT,
self.hash_mat_to_bytes(
hashers.dct(img, self.hash_size, self.high_freq_factor)
),
)
)
return results
def result(
self,
img: "Mat",
category: ImageCategory,
/,
*,
hash_type: ImageHashType = ImageHashType.DCT,
):
return [
it for it in self.results(img, category) if it.image_hash_type == hash_type
][0]

View File

@ -1,18 +1,19 @@
import logging
import math
from typing import Optional, Sequence, Tuple
from typing import TYPE_CHECKING, Callable, Optional, Sequence, Tuple
import cv2
import numpy as np
from .crop import crop_xywh
from .types import Mat
from ..crop import crop_xywh
from .base import OcrTextProvider
__all__ = [
"FixRects",
"preprocess_hog",
"ocr_digits_by_contour_get_samples",
"ocr_digits_by_contour_knn",
]
if TYPE_CHECKING:
from cv2.ml import KNearest
from ..types import Mat
logger = logging.getLogger(__name__)
class FixRects:
@ -68,7 +69,7 @@ class FixRects:
@staticmethod
def split_connected(
img_masked: Mat,
img_masked: "Mat",
rects: Sequence[Tuple[int, int, int, int]],
rect_wh_ratio: float = 1.05,
width_range_ratio: float = 0.1,
@ -118,7 +119,7 @@ class FixRects:
return return_rects
def resize_fill_square(img: Mat, target: int = 20):
def resize_fill_square(img: "Mat", target: int = 20):
h, w = img.shape[:2]
if h > w:
new_h = target
@ -152,29 +153,88 @@ def preprocess_hog(digit_rois):
def ocr_digit_samples_knn(__samples, knn_model: cv2.ml.KNearest, k: int = 4):
_, results, _, _ = knn_model.findNearest(__samples, k)
result_list = [int(r) for r in results.ravel()]
result_str = "".join(str(r) for r in result_list if r > -1)
return int(result_str) if result_str else 0
return [int(r) for r in results.ravel()]
def ocr_digits_by_contour_get_samples(__roi_gray: Mat, size: int):
roi = __roi_gray.copy()
contours, _ = cv2.findContours(roi, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
rects = [cv2.boundingRect(c) for c in contours]
rects = FixRects.connect_broken(rects, roi.shape[1], roi.shape[0])
rects = FixRects.split_connected(roi, rects)
rects = sorted(rects, key=lambda r: r[0])
# digit_rois = [cv2.resize(crop_xywh(roi, rect), size) for rect in rects]
digit_rois = [resize_fill_square(crop_xywh(roi, rect), size) for rect in rects]
return preprocess_hog(digit_rois)
class OcrKNearestTextProvider(OcrTextProvider):
_ContourFilter = Callable[["Mat"], bool]
_RectsFilter = Callable[[Sequence[int]], bool]
def __init__(self, model: "KNearest"):
self.model = model
def ocr_digits_by_contour_knn(
__roi_gray: Mat,
knn_model: cv2.ml.KNearest,
*,
k=4,
size: int = 20,
) -> int:
samples = ocr_digits_by_contour_get_samples(__roi_gray, size)
return ocr_digit_samples_knn(samples, knn_model, k)
def contours(
self, img: "Mat", /, *, contours_filter: Optional[_ContourFilter] = None
):
cnts, _ = cv2.findContours(img, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
if contours_filter:
cnts = list(filter(contours_filter, cnts))
return cnts
def result_raw(
self,
img: "Mat",
/,
*,
fix_rects: bool = True,
contours_filter: Optional[_ContourFilter] = None,
rects_filter: Optional[_RectsFilter] = None,
):
"""
:param img: grayscaled roi
"""
try:
cnts, _ = cv2.findContours(img, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
if contours_filter:
cnts = list(filter(contours_filter, cnts))
rects = [cv2.boundingRect(cnt) for cnt in cnts]
if fix_rects and rects_filter:
rects = FixRects.connect_broken(rects, img.shape[1], img.shape[0]) # type: ignore
rects = list(filter(rects_filter, rects))
rects = FixRects.split_connected(img, rects)
elif fix_rects:
rects = FixRects.connect_broken(rects, img.shape[1], img.shape[0]) # type: ignore
rects = FixRects.split_connected(img, rects)
elif rects_filter:
rects = list(filter(rects_filter, rects))
rects = sorted(rects, key=lambda r: r[0])
digits = []
for rect in rects:
digit = crop_xywh(img, rect)
digit = resize_fill_square(digit, 20)
digits.append(digit)
samples = preprocess_hog(digits)
return ocr_digit_samples_knn(samples, self.model)
except Exception:
logger.exception("Error occurred during KNearest OCR")
return None
def result(
self,
img: "Mat",
/,
*,
fix_rects: bool = True,
contours_filter: Optional[_ContourFilter] = None,
rects_filter: Optional[_RectsFilter] = None,
):
"""
:param img: grayscaled roi
"""
raw = self.result_raw(
img,
fix_rects=fix_rects,
contours_filter=contours_filter,
rects_filter=rects_filter,
)
return (
"".join(["".join(str(r) for r in raw if r > -1)])
if raw is not None
else None
)