Compare commits

...

6 Commits

Author SHA1 Message Date
0d8e4dea8e
refactor: remove needless module 2023-10-01 04:00:06 +08:00
2b01f68a73
refactor: replace device structure 2023-10-01 03:23:43 +08:00
897705d23d
refactor: class rename 2023-10-01 03:07:20 +08:00
c6aba3a7e9
refactor: module rename 2023-10-01 03:03:39 +08:00
f7cfb84135
wip: DeviceOcr 2023-10-01 03:02:06 +08:00
8d33491d9b
refactor: masker 2023-10-01 02:48:45 +08:00
37 changed files with 436 additions and 1207 deletions

View File

@ -1,5 +1,4 @@
from .crop import * from .crop import *
from .device import * from .device import *
from .mask import *
from .ocr import * from .ocr import *
from .utils import * from .utils import *

View File

@ -8,7 +8,6 @@ from PIL import Image
from ....crop import crop_xywh from ....crop import crop_xywh
from ....ocr import FixRects, ocr_digits_by_contour_knn, preprocess_hog from ....ocr import FixRects, ocr_digits_by_contour_knn, preprocess_hog
from ....phash_db import ImagePHashDatabase from ....phash_db import ImagePHashDatabase
from ....sift_db import SIFTDatabase
from ....types import Mat, cv2_ml_KNearest from ....types import Mat, cv2_ml_KNearest
from ....utils import construct_int_xywh_rect from ....utils import construct_int_xywh_rect
from ...shared import B30OcrResultItem from ...shared import B30OcrResultItem

View File

@ -0,0 +1,101 @@
import cv2
import numpy as np
from PIL import Image
from ..crop import crop_xywh
from ..ocr import (
FixRects,
ocr_digit_samples_knn,
ocr_digits_by_contour_knn,
preprocess_hog,
resize_fill_square,
)
from ..phash_db import ImagePHashDatabase
from .roi.extractor import DeviceRoiExtractor
from .roi.masker import DeviceRoiMasker
class DeviceOcr:
def __init__(
self,
extractor: DeviceRoiExtractor,
masker: DeviceRoiMasker,
knn_model: cv2.ml.KNearest,
phash_db: ImagePHashDatabase,
):
self.extractor = extractor
self.masker = masker
self.knn_model = knn_model
self.phash_db = phash_db
def pfl(self, roi_gray: cv2.Mat, factor: float = 1.25):
contours, _ = cv2.findContours(
roi_gray, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE
)
filtered_contours = [c for c in contours if cv2.contourArea(c) >= 5 * factor]
rects = [cv2.boundingRect(c) for c in filtered_contours]
rects = FixRects.connect_broken(rects, roi_gray.shape[1], roi_gray.shape[0])
filtered_rects = [r for r in rects if r[2] >= 5 * factor and r[3] >= 6 * factor]
filtered_rects = FixRects.split_connected(roi_gray, filtered_rects)
filtered_rects = sorted(filtered_rects, key=lambda r: r[0])
roi_ocr = roi_gray.copy()
filtered_contours_flattened = {tuple(c.flatten()) for c in filtered_contours}
for contour in contours:
if tuple(contour.flatten()) in filtered_contours_flattened:
continue
roi_ocr = cv2.fillPoly(roi_ocr, [contour], [0])
digit_rois = [
resize_fill_square(crop_xywh(roi_ocr, r), 20)
for r in sorted(filtered_rects, key=lambda r: r[0])
]
samples = preprocess_hog(digit_rois)
return ocr_digit_samples_knn(samples, self.knn_model)
def pure(self):
return self.pfl(self.masker.pure(self.extractor.pure))
def far(self):
return self.pfl(self.masker.far(self.extractor.far))
def lost(self):
return self.pfl(self.masker.lost(self.extractor.lost))
def score(self):
roi = self.masker.score(self.extractor.score)
contours, _ = cv2.findContours(roi, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
for contour in contours:
x, y, w, h = cv2.boundingRect(contour)
if h < roi.shape[0] * 0.6:
roi = cv2.fillPoly(roi, [contour], [0])
return ocr_digits_by_contour_knn(roi, self.knn_model)
def rating_class(self):
roi = self.extractor.rating_class
results = [
self.masker.rating_class_pst(roi),
self.masker.rating_class_prs(roi),
self.masker.rating_class_ftr(roi),
self.masker.rating_class_byd(roi),
]
return max(enumerate(results), key=lambda i: np.count_nonzero(i[1]))[0]
def max_recall(self):
return ocr_digits_by_contour_knn(
self.masker.max_recall(self.extractor.max_recall), self.knn_model
)
def clear_status(self):
roi = self.extractor.clear_status
results = [
self.masker.clear_status_track_lost(roi),
self.masker.clear_status_track_complete(roi),
self.masker.clear_status_full_recall(roi),
self.masker.clear_status_pure_memory(roi),
]
return max(enumerate(results), key=lambda i: np.count_nonzero(i[1]))[0]
def song_id(self):
return self.phash_db.lookup_image(Image.fromarray(self.extractor.jacket))[0]

View File

@ -0,0 +1,3 @@
from .common import DeviceAutoRoiSizes
from .t1 import DeviceAutoRoiSizesT1
from .t2 import DeviceAutoRoiSizesT2

View File

@ -1,7 +1,7 @@
from ..common import Sizes from ..common import DeviceRoiSizes
class AutoSizes(Sizes): class DeviceAutoRoiSizes(DeviceRoiSizes):
def __init__(self, w: int, h: int): def __init__(self, w: int, h: int):
self.w = w self.w = w
self.h = h self.h = h

View File

@ -1,7 +1,7 @@
from .common import AutoSizes from .common import DeviceAutoRoiSizes
class AutoSizesT1(AutoSizes): class DeviceAutoRoiSizesT1(DeviceAutoRoiSizes):
@property @property
def factor(self): def factor(self):
return ( return (

View File

@ -1,7 +1,7 @@
from .common import AutoSizes from .common import DeviceAutoRoiSizes
class AutoSizesT2(AutoSizes): class DeviceAutoRoiSizesT2(DeviceAutoRoiSizes):
@property @property
def factor(self): def factor(self):
return ( return (

View File

@ -3,7 +3,7 @@ from typing import Tuple
Rect = Tuple[int, int, int, int] Rect = Tuple[int, int, int, int]
class Sizes: class DeviceRoiSizes:
pure: Rect pure: Rect
far: Rect far: Rect
lost: Rect lost: Rect

View File

@ -0,0 +1 @@
from .common import DeviceRoiExtractor

View File

@ -1,11 +1,11 @@
import cv2 import cv2
from ..crop import crop_xywh from ....crop import crop_xywh
from .sizes.common import Sizes from ..definitions.common import DeviceRoiSizes
class Extractor: class DeviceRoiExtractor:
def __init__(self, img: cv2.Mat, sizes: Sizes): def __init__(self, img: cv2.Mat, sizes: DeviceRoiSizes):
self.img = img self.img = img
self.sizes = sizes self.sizes = sizes
@ -28,6 +28,10 @@ class Extractor:
def score(self): def score(self):
return crop_xywh(self.img, self.__construct_int_rect(self.sizes.score)) return crop_xywh(self.img, self.__construct_int_rect(self.sizes.score))
@property
def jacket(self):
return crop_xywh(self.img, self.__construct_int_rect(self.sizes.jacket))
@property @property
def rating_class(self): def rating_class(self):
return crop_xywh(self.img, self.__construct_int_rect(self.sizes.rating_class)) return crop_xywh(self.img, self.__construct_int_rect(self.sizes.rating_class))

View File

@ -0,0 +1,2 @@
from .auto import *
from .common import DeviceRoiMasker

View File

@ -0,0 +1,3 @@
from .common import DeviceAutoRoiMasker
from .t1 import DeviceAutoRoiMaskerT1
from .t2 import DeviceAutoRoiMaskerT2

View File

@ -0,0 +1,5 @@
from ..common import DeviceRoiMasker
class DeviceAutoRoiMasker(DeviceRoiMasker):
...

View File

@ -0,0 +1,123 @@
import cv2
import numpy as np
from .common import DeviceAutoRoiMasker
GRAY_BGR_MIN = np.array([50] * 3, np.uint8)
GRAY_BGR_MAX = np.array([160] * 3, np.uint8)
WHITE_HSV_MIN = np.array([0, 0, 240], np.uint8)
WHITE_HSV_MAX = np.array([179, 10, 255], np.uint8)
PST_HSV_MIN = np.array([100, 50, 80], np.uint8)
PST_HSV_MAX = np.array([100, 255, 255], np.uint8)
PRS_HSV_MIN = np.array([43, 40, 75], np.uint8)
PRS_HSV_MAX = np.array([50, 155, 190], np.uint8)
FTR_HSV_MIN = np.array([149, 30, 0], np.uint8)
FTR_HSV_MAX = np.array([155, 181, 150], np.uint8)
BYD_HSV_MIN = np.array([170, 50, 50], np.uint8)
BYD_HSV_MAX = np.array([179, 210, 198], np.uint8)
TRACK_LOST_HSV_MIN = np.array([170, 75, 90], np.uint8)
TRACK_LOST_HSV_MAX = np.array([175, 170, 160], np.uint8)
TRACK_COMPLETE_HSV_MIN = np.array([140, 0, 50], np.uint8)
TRACK_COMPLETE_HSV_MAX = np.array([145, 50, 130], np.uint8)
FULL_RECALL_HSV_MIN = np.array([140, 60, 80], np.uint8)
FULL_RECALL_HSV_MAX = np.array([150, 130, 145], np.uint8)
PURE_MEMORY_HSV_MIN = np.array([90, 70, 80], np.uint8)
PURE_MEMORY_HSV_MAX = np.array([110, 200, 175], np.uint8)
class DeviceAutoRoiMaskerT1(DeviceAutoRoiMasker):
@classmethod
def gray(cls, roi_bgr: cv2.Mat) -> cv2.Mat:
bgr_value_equal_mask = np.max(roi_bgr, axis=2) - np.min(roi_bgr, axis=2) <= 5
img_bgr = roi_bgr.copy()
img_bgr[~bgr_value_equal_mask] = np.array([0, 0, 0], roi_bgr.dtype)
img_bgr = cv2.erode(img_bgr, cv2.getStructuringElement(cv2.MORPH_RECT, (2, 2)))
img_bgr = cv2.dilate(img_bgr, cv2.getStructuringElement(cv2.MORPH_RECT, (1, 1)))
return cv2.inRange(img_bgr, GRAY_BGR_MIN, GRAY_BGR_MAX)
@classmethod
def pure(cls, roi_bgr: cv2.Mat) -> cv2.Mat:
return cls.gray(roi_bgr)
@classmethod
def far(cls, roi_bgr: cv2.Mat) -> cv2.Mat:
return cls.gray(roi_bgr)
@classmethod
def lost(cls, roi_bgr: cv2.Mat) -> cv2.Mat:
return cls.gray(roi_bgr)
@classmethod
def score(cls, roi_bgr: cv2.Mat) -> cv2.Mat:
return cv2.inRange(
cv2.cvtColor(roi_bgr, cv2.COLOR_BGR2HSV), WHITE_HSV_MIN, WHITE_HSV_MAX
)
@classmethod
def rating_class_pst(cls, roi_bgr: cv2.Mat) -> cv2.Mat:
return cv2.inRange(
cv2.cvtColor(roi_bgr, cv2.COLOR_BGR2HSV), PST_HSV_MIN, PST_HSV_MAX
)
@classmethod
def rating_class_prs(cls, roi_bgr: cv2.Mat) -> cv2.Mat:
return cv2.inRange(
cv2.cvtColor(roi_bgr, cv2.COLOR_BGR2HSV), PRS_HSV_MIN, PRS_HSV_MAX
)
@classmethod
def rating_class_ftr(cls, roi_bgr: cv2.Mat) -> cv2.Mat:
return cv2.inRange(
cv2.cvtColor(roi_bgr, cv2.COLOR_BGR2HSV), FTR_HSV_MIN, FTR_HSV_MAX
)
@classmethod
def rating_class_byd(cls, roi_bgr: cv2.Mat) -> cv2.Mat:
return cv2.inRange(
cv2.cvtColor(roi_bgr, cv2.COLOR_BGR2HSV), BYD_HSV_MIN, BYD_HSV_MAX
)
@classmethod
def max_recall(cls, roi_bgr: cv2.Mat) -> cv2.Mat:
return cls.gray(roi_bgr)
@classmethod
def clear_status_track_lost(cls, roi_bgr: cv2.Mat) -> cv2.Mat:
return cv2.inRange(
cv2.cvtColor(roi_bgr, cv2.COLOR_BGR2HSV),
TRACK_LOST_HSV_MIN,
TRACK_LOST_HSV_MAX,
)
@classmethod
def clear_status_track_complete(cls, roi_bgr: cv2.Mat) -> cv2.Mat:
return cv2.inRange(
cv2.cvtColor(roi_bgr, cv2.COLOR_BGR2HSV),
TRACK_COMPLETE_HSV_MIN,
TRACK_COMPLETE_HSV_MAX,
)
@classmethod
def clear_status_full_recall(cls, roi_bgr: cv2.Mat) -> cv2.Mat:
return cv2.inRange(
cv2.cvtColor(roi_bgr, cv2.COLOR_BGR2HSV),
FULL_RECALL_HSV_MIN,
FULL_RECALL_HSV_MAX,
)
@classmethod
def clear_status_pure_memory(cls, roi_bgr: cv2.Mat) -> cv2.Mat:
return cv2.inRange(
cv2.cvtColor(roi_bgr, cv2.COLOR_BGR2HSV),
PURE_MEMORY_HSV_MIN,
PURE_MEMORY_HSV_MAX,
)

View File

@ -0,0 +1,128 @@
import cv2
import numpy as np
from .common import DeviceAutoRoiMasker
PFL_HSV_MIN = np.array([0, 0, 248], np.uint8)
PFL_HSV_MAX = np.array([179, 10, 255], np.uint8)
WHITE_HSV_MIN = np.array([0, 0, 240], np.uint8)
WHITE_HSV_MAX = np.array([179, 10, 255], np.uint8)
PST_HSV_MIN = np.array([100, 50, 80], np.uint8)
PST_HSV_MAX = np.array([100, 255, 255], np.uint8)
PRS_HSV_MIN = np.array([43, 40, 75], np.uint8)
PRS_HSV_MAX = np.array([50, 155, 190], np.uint8)
FTR_HSV_MIN = np.array([149, 30, 0], np.uint8)
FTR_HSV_MAX = np.array([155, 181, 150], np.uint8)
BYD_HSV_MIN = np.array([170, 50, 50], np.uint8)
BYD_HSV_MAX = np.array([179, 210, 198], np.uint8)
MAX_RECALL_HSV_MIN = np.array([125, 0, 0], np.uint8)
MAX_RECALL_HSV_MAX = np.array([130, 100, 150], np.uint8)
TRACK_LOST_HSV_MIN = np.array([170, 75, 90], np.uint8)
TRACK_LOST_HSV_MAX = np.array([175, 170, 160], np.uint8)
TRACK_COMPLETE_HSV_MIN = np.array([140, 0, 50], np.uint8)
TRACK_COMPLETE_HSV_MAX = np.array([145, 50, 130], np.uint8)
FULL_RECALL_HSV_MIN = np.array([140, 60, 80], np.uint8)
FULL_RECALL_HSV_MAX = np.array([150, 130, 145], np.uint8)
PURE_MEMORY_HSV_MIN = np.array([90, 70, 80], np.uint8)
PURE_MEMORY_HSV_MAX = np.array([110, 200, 175], np.uint8)
class DeviceAutoRoiMaskerT2(DeviceAutoRoiMasker):
@classmethod
def pfl(cls, roi_bgr: cv2.Mat) -> cv2.Mat:
return cv2.inRange(
cv2.cvtColor(roi_bgr, cv2.COLOR_BGR2HSV), PFL_HSV_MIN, PFL_HSV_MAX
)
@classmethod
def pure(cls, roi_bgr: cv2.Mat) -> cv2.Mat:
return cls.pfl(roi_bgr)
@classmethod
def far(cls, roi_bgr: cv2.Mat) -> cv2.Mat:
return cls.pfl(roi_bgr)
@classmethod
def lost(cls, roi_bgr: cv2.Mat) -> cv2.Mat:
return cls.pfl(roi_bgr)
@classmethod
def score(cls, roi_bgr: cv2.Mat) -> cv2.Mat:
return cv2.inRange(
cv2.cvtColor(roi_bgr, cv2.COLOR_BGR2HSV), WHITE_HSV_MIN, WHITE_HSV_MAX
)
@classmethod
def rating_class_pst(cls, roi_bgr: cv2.Mat) -> cv2.Mat:
return cv2.inRange(
cv2.cvtColor(roi_bgr, cv2.COLOR_BGR2HSV), PST_HSV_MIN, PST_HSV_MAX
)
@classmethod
def rating_class_prs(cls, roi_bgr: cv2.Mat) -> cv2.Mat:
return cv2.inRange(
cv2.cvtColor(roi_bgr, cv2.COLOR_BGR2HSV), PRS_HSV_MIN, PRS_HSV_MAX
)
@classmethod
def rating_class_ftr(cls, roi_bgr: cv2.Mat) -> cv2.Mat:
return cv2.inRange(
cv2.cvtColor(roi_bgr, cv2.COLOR_BGR2HSV), FTR_HSV_MIN, FTR_HSV_MAX
)
@classmethod
def rating_class_byd(cls, roi_bgr: cv2.Mat) -> cv2.Mat:
return cv2.inRange(
cv2.cvtColor(roi_bgr, cv2.COLOR_BGR2HSV), BYD_HSV_MIN, BYD_HSV_MAX
)
@classmethod
def max_recall(cls, roi_bgr: cv2.Mat) -> cv2.Mat:
return cv2.inRange(
cv2.cvtColor(roi_bgr, cv2.COLOR_BGR2HSV),
MAX_RECALL_HSV_MIN,
MAX_RECALL_HSV_MAX,
)
@classmethod
def clear_status_track_lost(cls, roi_bgr: cv2.Mat) -> cv2.Mat:
return cv2.inRange(
cv2.cvtColor(roi_bgr, cv2.COLOR_BGR2HSV),
TRACK_LOST_HSV_MIN,
TRACK_LOST_HSV_MAX,
)
@classmethod
def clear_status_track_complete(cls, roi_bgr: cv2.Mat) -> cv2.Mat:
return cv2.inRange(
cv2.cvtColor(roi_bgr, cv2.COLOR_BGR2HSV),
TRACK_COMPLETE_HSV_MIN,
TRACK_COMPLETE_HSV_MAX,
)
@classmethod
def clear_status_full_recall(cls, roi_bgr: cv2.Mat) -> cv2.Mat:
return cv2.inRange(
cv2.cvtColor(roi_bgr, cv2.COLOR_BGR2HSV),
FULL_RECALL_HSV_MIN,
FULL_RECALL_HSV_MAX,
)
@classmethod
def clear_status_pure_memory(cls, roi_bgr: cv2.Mat) -> cv2.Mat:
return cv2.inRange(
cv2.cvtColor(roi_bgr, cv2.COLOR_BGR2HSV),
PURE_MEMORY_HSV_MIN,
PURE_MEMORY_HSV_MAX,
)

View File

@ -0,0 +1,55 @@
import cv2
class DeviceRoiMasker:
@classmethod
def pure(cls, roi_bgr: cv2.Mat) -> cv2.Mat:
raise NotImplementedError()
@classmethod
def far(cls, roi_bgr: cv2.Mat) -> cv2.Mat:
raise NotImplementedError()
@classmethod
def lost(cls, roi_bgr: cv2.Mat) -> cv2.Mat:
raise NotImplementedError()
@classmethod
def score(cls, roi_bgr: cv2.Mat) -> cv2.Mat:
raise NotImplementedError()
@classmethod
def rating_class_pst(cls, roi_bgr: cv2.Mat) -> cv2.Mat:
raise NotImplementedError()
@classmethod
def rating_class_prs(cls, roi_bgr: cv2.Mat) -> cv2.Mat:
raise NotImplementedError()
@classmethod
def rating_class_ftr(cls, roi_bgr: cv2.Mat) -> cv2.Mat:
raise NotImplementedError()
@classmethod
def rating_class_byd(cls, roi_bgr: cv2.Mat) -> cv2.Mat:
raise NotImplementedError()
@classmethod
def max_recall(cls, roi_bgr: cv2.Mat) -> cv2.Mat:
raise NotImplementedError()
@classmethod
def clear_status_track_lost(cls, roi_bgr: cv2.Mat) -> cv2.Mat:
raise NotImplementedError()
@classmethod
def clear_status_track_complete(cls, roi_bgr: cv2.Mat) -> cv2.Mat:
raise NotImplementedError()
@classmethod
def clear_status_full_recall(cls, roi_bgr: cv2.Mat) -> cv2.Mat:
raise NotImplementedError()
@classmethod
def clear_status_pure_memory(cls, roi_bgr: cv2.Mat) -> cv2.Mat:
raise NotImplementedError()

View File

@ -1,53 +0,0 @@
from typing import Tuple
from ...types import Mat
from .definition import DeviceV1
__all__ = [
"crop_img",
"crop_from_device_attr",
"crop_to_pure",
"crop_to_far",
"crop_to_lost",
"crop_to_max_recall",
"crop_to_rating_class",
"crop_to_score",
"crop_to_title",
]
def crop_img(img: Mat, *, top: int, left: int, bottom: int, right: int):
return img[top:bottom, left:right]
def crop_from_device_attr(img: Mat, rect: Tuple[int, int, int, int]):
x, y, w, h = rect
return crop_img(img, top=y, left=x, bottom=y + h, right=x + w)
def crop_to_pure(screenshot: Mat, device: DeviceV1):
return crop_from_device_attr(screenshot, device.pure)
def crop_to_far(screenshot: Mat, device: DeviceV1):
return crop_from_device_attr(screenshot, device.far)
def crop_to_lost(screenshot: Mat, device: DeviceV1):
return crop_from_device_attr(screenshot, device.lost)
def crop_to_max_recall(screenshot: Mat, device: DeviceV1):
return crop_from_device_attr(screenshot, device.max_recall)
def crop_to_rating_class(screenshot: Mat, device: DeviceV1):
return crop_from_device_attr(screenshot, device.rating_class)
def crop_to_score(screenshot: Mat, device: DeviceV1):
return crop_from_device_attr(screenshot, device.score)
def crop_to_title(screenshot: Mat, device: DeviceV1):
return crop_from_device_attr(screenshot, device.title)

View File

@ -1,37 +0,0 @@
from dataclasses import dataclass
from typing import Any, Dict, Tuple
__all__ = ["DeviceV1"]
@dataclass(kw_only=True)
class DeviceV1:
version: int
uuid: str
name: str
pure: Tuple[int, int, int, int]
far: Tuple[int, int, int, int]
lost: Tuple[int, int, int, int]
max_recall: Tuple[int, int, int, int]
rating_class: Tuple[int, int, int, int]
score: Tuple[int, int, int, int]
title: Tuple[int, int, int, int]
@classmethod
def from_json_object(cls, json_dict: Dict[str, Any]):
if json_dict["version"] == 1:
return cls(
version=1,
uuid=json_dict["uuid"],
name=json_dict["name"],
pure=json_dict["pure"],
far=json_dict["far"],
lost=json_dict["lost"],
max_recall=json_dict["max_recall"],
rating_class=json_dict["rating_class"],
score=json_dict["score"],
title=json_dict["title"],
)
def repr_info(self):
return f"Device(version={self.version}, uuid={repr(self.uuid)}, name={repr(self.name)})"

View File

@ -1,86 +0,0 @@
from typing import List
import cv2
from ...crop import crop_xywh
from ...mask import mask_gray, mask_white
from ...ocr import ocr_digits_by_contour_knn, ocr_rating_class
from ...types import Mat, cv2_ml_KNearest
from ..shared import DeviceOcrResult
from .crop import *
from .definition import DeviceV1
class DeviceV1Ocr:
def __init__(self, device: DeviceV1, knn_model: cv2_ml_KNearest):
self.__device = device
self.__knn_model = knn_model
@property
def device(self):
return self.__device
@device.setter
def device(self, value):
self.__device = value
@property
def knn_model(self):
return self.__knn_model
@knn_model.setter
def knn_model(self, value):
self.__knn_model = value
def preprocess_score_roi(self, __roi_gray: Mat) -> List[Mat]:
roi_gray = __roi_gray.copy()
contours, _ = cv2.findContours(
roi_gray, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE
)
for contour in contours:
rect = cv2.boundingRect(contour)
if rect[3] > roi_gray.shape[0] * 0.6:
continue
roi_gray = cv2.fillPoly(roi_gray, [contour], 0)
return roi_gray
def ocr(self, img_bgr: Mat):
rating_class_roi = crop_to_rating_class(img_bgr, self.device)
rating_class = ocr_rating_class(rating_class_roi)
pfl_mr_roi = [
crop_to_pure(img_bgr, self.device),
crop_to_far(img_bgr, self.device),
crop_to_lost(img_bgr, self.device),
crop_to_max_recall(img_bgr, self.device),
]
pfl_mr_roi = [mask_gray(roi) for roi in pfl_mr_roi]
pure, far, lost = [
ocr_digits_by_contour_knn(roi, self.knn_model) for roi in pfl_mr_roi[:3]
]
max_recall_contours, _ = cv2.findContours(
pfl_mr_roi[3], cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE
)
max_recall_rects = [cv2.boundingRect(c) for c in max_recall_contours]
max_recall_rect = sorted(max_recall_rects, key=lambda r: r[0])[-1]
max_recall_roi = crop_xywh(img_bgr, max_recall_rect)
max_recall = ocr_digits_by_contour_knn(max_recall_roi, self.knn_model)
score_roi = crop_to_score(img_bgr, self.device)
score_roi = mask_white(score_roi)
score_roi = self.preprocess_score_roi(score_roi)
score = ocr_digits_by_contour_knn(score_roi, self.knn_model)
return DeviceOcrResult(
song_id=None,
title=None,
rating_class=rating_class,
pure=pure,
far=far,
lost=lost,
score=score,
max_recall=max_recall,
clear_type=None,
)

View File

@ -1,4 +0,0 @@
from .definition import DeviceV2
from .ocr import DeviceV2Ocr
from .rois import DeviceV2AutoRois, DeviceV2Rois
from .shared import MAX_RECALL_CLOSE_KERNEL

View File

@ -1,26 +0,0 @@
from typing import Iterable
from attrs import define, field
from ...types import XYWHRect
def iterable_to_xywh_rect(__iter: Iterable) -> XYWHRect:
return XYWHRect(*__iter)
@define(kw_only=True)
class DeviceV2:
version = field(type=int)
uuid = field(type=str)
name = field(type=str)
crop_black_edges = field(type=bool)
factor = field(type=float)
pure = field(converter=iterable_to_xywh_rect, default=[0, 0, 0, 0])
far = field(converter=iterable_to_xywh_rect, default=[0, 0, 0, 0])
lost = field(converter=iterable_to_xywh_rect, default=[0, 0, 0, 0])
score = field(converter=iterable_to_xywh_rect, default=[0, 0, 0, 0])
max_recall_rating_class = field(
converter=iterable_to_xywh_rect, default=[0, 0, 0, 0]
)
title = field(converter=iterable_to_xywh_rect, default=[0, 0, 0, 0])

View File

@ -1,172 +0,0 @@
import math
from functools import lru_cache
from typing import Sequence
import cv2
import numpy as np
from PIL import Image
from ...crop import crop_xywh
from ...mask import (
mask_byd,
mask_ftr,
mask_gray,
mask_max_recall_purple,
mask_pfl_white,
mask_prs,
mask_pst,
mask_white,
)
from ...ocr import (
FixRects,
ocr_digit_samples_knn,
ocr_digits_by_contour_knn,
preprocess_hog,
resize_fill_square,
)
from ...phash_db import ImagePHashDatabase
from ...sift_db import SIFTDatabase
from ...types import Mat, cv2_ml_KNearest
from ..shared import DeviceOcrResult
from .preprocess import find_digits_preprocess
from .rois import DeviceV2Rois
from .shared import MAX_RECALL_CLOSE_KERNEL
from .sizes import SizesV2
class DeviceV2Ocr:
def __init__(self, knn_model: cv2_ml_KNearest, phash_db: ImagePHashDatabase):
self.__knn_model = knn_model
self.__phash_db = phash_db
@property
def knn_model(self):
if not self.__knn_model:
raise ValueError("`knn_model` unset.")
return self.__knn_model
@knn_model.setter
def knn_model(self, value: cv2_ml_KNearest):
self.__knn_model = value
@property
def phash_db(self):
if not self.__phash_db:
raise ValueError("`phash_db` unset.")
return self.__phash_db
@phash_db.setter
def phash_db(self, value: SIFTDatabase):
self.__phash_db = value
@lru_cache
def _get_digit_widths(self, num_list: Sequence[int], factor: float):
widths = set()
for n in num_list:
lower = math.floor(n * factor)
upper = math.ceil(n * factor)
widths.update(range(lower, upper + 1))
return widths
def _base_ocr_pfl(self, roi_masked: Mat, factor: float = 1.0):
contours, _ = cv2.findContours(
roi_masked, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE
)
filtered_contours = [c for c in contours if cv2.contourArea(c) >= 5 * factor]
rects = [cv2.boundingRect(c) for c in filtered_contours]
rects = FixRects.connect_broken(rects, roi_masked.shape[1], roi_masked.shape[0])
rect_contour_map = dict(zip(rects, filtered_contours))
filtered_rects = [r for r in rects if r[2] >= 5 * factor and r[3] >= 6 * factor]
filtered_rects = FixRects.split_connected(roi_masked, filtered_rects)
filtered_rects = sorted(filtered_rects, key=lambda r: r[0])
roi_ocr = roi_masked.copy()
filtered_contours_flattened = {tuple(c.flatten()) for c in filtered_contours}
for contour in contours:
if tuple(contour.flatten()) in filtered_contours_flattened:
continue
roi_ocr = cv2.fillPoly(roi_ocr, [contour], [0])
digit_rois = [
resize_fill_square(crop_xywh(roi_ocr, r), 20)
for r in sorted(filtered_rects, key=lambda r: r[0])
]
# [cv2.imshow(f"r{i}", r) for i, r in enumerate(digit_rois)]
# cv2.waitKey(0)
samples = preprocess_hog(digit_rois)
return ocr_digit_samples_knn(samples, self.knn_model)
def ocr_song_id(self, rois: DeviceV2Rois):
jacket = cv2.cvtColor(rois.jacket, cv2.COLOR_BGR2GRAY)
return self.phash_db.lookup_image(Image.fromarray(jacket))[0]
def ocr_rating_class(self, rois: DeviceV2Rois):
roi = cv2.cvtColor(rois.max_recall_rating_class, cv2.COLOR_BGR2HSV)
results = [mask_pst(roi), mask_prs(roi), mask_ftr(roi), mask_byd(roi)]
return max(enumerate(results), key=lambda i: np.count_nonzero(i[1]))[0]
def ocr_score(self, rois: DeviceV2Rois):
roi = cv2.cvtColor(rois.score, cv2.COLOR_BGR2HSV)
roi = mask_white(roi)
contours, _ = cv2.findContours(roi, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
for contour in contours:
x, y, w, h = cv2.boundingRect(contour)
if h < roi.shape[0] * 0.6:
roi = cv2.fillPoly(roi, [contour], [0])
return ocr_digits_by_contour_knn(roi, self.knn_model)
def mask_pfl(self, pfl_roi: Mat, rois: DeviceV2Rois):
return (
mask_pfl_white(cv2.cvtColor(pfl_roi, cv2.COLOR_BGR2HSV))
if isinstance(rois.sizes, SizesV2)
else mask_gray(pfl_roi)
)
def ocr_pure(self, rois: DeviceV2Rois):
roi = self.mask_pfl(rois.pure, rois)
return self._base_ocr_pfl(roi, rois.sizes.factor)
def ocr_far(self, rois: DeviceV2Rois):
roi = self.mask_pfl(rois.far, rois)
return self._base_ocr_pfl(roi, rois.sizes.factor)
def ocr_lost(self, rois: DeviceV2Rois):
roi = self.mask_pfl(rois.lost, rois)
return self._base_ocr_pfl(roi, rois.sizes.factor)
def ocr_max_recall(self, rois: DeviceV2Rois):
roi = (
mask_max_recall_purple(
cv2.cvtColor(rois.max_recall_rating_class, cv2.COLOR_BGR2HSV)
)
if isinstance(rois.sizes, SizesV2)
else mask_gray(rois.max_recall_rating_class)
)
roi_closed = cv2.morphologyEx(roi, cv2.MORPH_CLOSE, MAX_RECALL_CLOSE_KERNEL)
contours, _ = cv2.findContours(
roi_closed, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE
)
rects = sorted(
[cv2.boundingRect(c) for c in contours], key=lambda r: r[0], reverse=True
)
max_recall_roi = crop_xywh(roi, rects[0])
return ocr_digits_by_contour_knn(max_recall_roi, self.knn_model)
def ocr(self, rois: DeviceV2Rois):
song_id = self.ocr_song_id(rois)
rating_class = self.ocr_rating_class(rois)
score = self.ocr_score(rois)
pure = self.ocr_pure(rois)
far = self.ocr_far(rois)
lost = self.ocr_lost(rois)
max_recall = self.ocr_max_recall(rois)
return DeviceOcrResult(
rating_class=rating_class,
pure=pure,
far=far,
lost=lost,
score=score,
max_recall=max_recall,
song_id=song_id,
)

View File

@ -1,54 +0,0 @@
import cv2
from ...types import Mat
from .shared import *
def find_digits_preprocess(__img_masked: Mat) -> Mat:
img = __img_masked.copy()
img_denoised = cv2.morphologyEx(img, cv2.MORPH_OPEN, PFL_DENOISE_KERNEL)
# img_denoised = cv2.bitwise_and(img, img_denoised)
denoise_contours, _ = cv2.findContours(
img_denoised, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE
)
# cv2.drawContours(img_denoised, contours, -1, [128], 2)
# fill all contour.area < max(contour.area) * ratio with black pixels
# for denoise purposes
# define threshold contour area
# we assume the smallest digit "1", is 80% height of the image,
# and at least 1.5 pixel wide, considering cv2.contourArea always
# returns a smaller value than the actual contour area.
max_contour_area = __img_masked.shape[0] * 0.8 * 1.5
filtered_contours = list(
filter(lambda c: cv2.contourArea(c) >= max_contour_area, denoise_contours)
)
filtered_contours_flattened = {tuple(c.flatten()) for c in filtered_contours}
for contour in denoise_contours:
if tuple(contour.flatten()) not in filtered_contours_flattened:
img_denoised = cv2.fillPoly(img_denoised, [contour], [0])
# old algorithm, finding the largest contour area
## contour_area_tuples = [(contour, cv2.contourArea(contour)) for contour in contours]
## contour_area_tuples = sorted(
## contour_area_tuples, key=lambda item: item[1], reverse=True
## )
## max_contour_area = contour_area_tuples[0][1]
## print(max_contour_area, [item[1] for item in contour_area_tuples])
## contours_filter_end_index = len(contours)
## for i, item in enumerate(contour_area_tuples):
## contour, area = item
## if area < max_contour_area * 0.15:
## contours_filter_end_index = i
## break
## contours = [item[0] for item in contour_area_tuples]
## for contour in contours[-contours_filter_end_index - 1:]:
## img = cv2.fillPoly(img, [contour], [0])
## img_denoised = cv2.fillPoly(img_denoised, [contour], [0])
## contours = contours[:contours_filter_end_index]
return img_denoised

View File

@ -1,199 +0,0 @@
from typing import Union
from ...crop import crop_black_edges, crop_xywh
from ...types import Mat, XYWHRect
from .definition import DeviceV2
from .sizes import Sizes, SizesV1
def to_int(num: Union[int, float]) -> int:
return round(num)
class DeviceV2Rois:
def __init__(self, device: DeviceV2, img: Mat):
self.device = device
self.sizes = SizesV1(self.device.factor)
self.__img = img
@staticmethod
def construct_int_xywh_rect(x, y, w, h) -> XYWHRect:
return XYWHRect(*[to_int(item) for item in [x, y, w, h]])
@property
def img(self):
return self.__img
@img.setter
def img(self, img: Mat):
self.__img = (
crop_black_edges(img) if self.device.crop_black_edges else img.copy()
)
@property
def h(self):
return self.img.shape[0]
@property
def vmid(self):
return self.h / 2
@property
def w(self):
return self.img.shape[1]
@property
def hmid(self):
return self.w / 2
@property
def h_without_top_bar(self):
"""img_height -= top_bar_height"""
return self.h - self.sizes.TOP_BAR_HEIGHT
@property
def h_without_top_bar_mid(self):
return self.sizes.TOP_BAR_HEIGHT + self.h_without_top_bar / 2
@property
def pfl_top(self):
return self.h_without_top_bar_mid + self.sizes.PFL_TOP_FROM_VMID
@property
def pfl_left(self):
return self.hmid + self.sizes.PFL_LEFT_FROM_HMID
@property
def pure_rect(self):
return self.construct_int_xywh_rect(
x=self.pfl_left,
y=self.pfl_top,
w=self.sizes.PFL_WIDTH,
h=self.sizes.PFL_FONT_PX,
)
@property
def pure(self):
return crop_xywh(self.img, self.pure_rect)
@property
def far_rect(self):
return self.construct_int_xywh_rect(
x=self.pfl_left,
y=self.pfl_top + self.sizes.PFL_FONT_PX + self.sizes.PURE_FAR_GAP,
w=self.sizes.PFL_WIDTH,
h=self.sizes.PFL_FONT_PX,
)
@property
def far(self):
return crop_xywh(self.img, self.far_rect)
@property
def lost_rect(self):
return self.construct_int_xywh_rect(
x=self.pfl_left,
y=(
self.pfl_top
+ self.sizes.PFL_FONT_PX * 2
+ self.sizes.PURE_FAR_GAP
+ self.sizes.FAR_LOST_GAP
),
w=self.sizes.PFL_WIDTH,
h=self.sizes.PFL_FONT_PX,
)
@property
def lost(self):
return crop_xywh(self.img, self.lost_rect)
@property
def score_rect(self):
return self.construct_int_xywh_rect(
x=self.hmid - (self.sizes.SCORE_WIDTH / 2),
y=(
self.h_without_top_bar_mid
+ self.sizes.SCORE_BOTTOM_FROM_VMID
- self.sizes.SCORE_FONT_PX
),
w=self.sizes.SCORE_WIDTH,
h=self.sizes.SCORE_FONT_PX,
)
@property
def score(self):
return crop_xywh(self.img, self.score_rect)
@property
def max_recall_rating_class_rect(self):
x = (
self.hmid
+ self.sizes.JACKET_RIGHT_FROM_HOR_MID
- self.sizes.JACKET_WIDTH
- 25 * self.sizes.factor
)
return self.construct_int_xywh_rect(
x=x,
y=(
self.h_without_top_bar_mid
- self.sizes.SCORE_PANEL[1] / 2
- self.sizes.MR_RT_HEIGHT
),
w=self.sizes.MR_RT_WIDTH,
h=self.sizes.MR_RT_HEIGHT,
)
@property
def max_recall_rating_class(self):
return crop_xywh(self.img, self.max_recall_rating_class_rect)
@property
def title_rect(self):
return self.construct_int_xywh_rect(
x=0,
y=self.h_without_top_bar_mid
+ self.sizes.TITLE_BOTTOM_FROM_VMID
- self.sizes.TITLE_FONT_PX,
w=self.hmid + self.sizes.TITLE_WIDTH_RIGHT,
h=self.sizes.TITLE_FONT_PX,
)
@property
def title(self):
return crop_xywh(self.img, self.title_rect)
@property
def jacket_rect(self):
return self.construct_int_xywh_rect(
x=self.hmid
+ self.sizes.JACKET_RIGHT_FROM_HOR_MID
- self.sizes.JACKET_WIDTH,
y=self.h_without_top_bar_mid - self.sizes.SCORE_PANEL[1] / 2,
w=self.sizes.JACKET_WIDTH,
h=self.sizes.JACKET_WIDTH,
)
@property
def jacket(self):
return crop_xywh(self.img, self.jacket_rect)
class DeviceV2AutoRois(DeviceV2Rois):
@staticmethod
def get_factor(width: int, height: int):
ratio = width / height
return ((width / 16) * 9) / 720 if ratio < (16 / 9) else height / 720
def __init__(self, img: Mat):
factor = self.get_factor(img.shape[1], img.shape[0])
self.sizes = SizesV1(factor)
self.__img = None
self.img = img
@property
def img(self):
return self.__img
@img.setter
def img(self, img: Mat):
self.__img = crop_black_edges(img)

View File

@ -1,9 +0,0 @@
from cv2 import MORPH_RECT, getStructuringElement
PFL_DENOISE_KERNEL = getStructuringElement(MORPH_RECT, [2, 2])
PFL_ERODE_KERNEL = getStructuringElement(MORPH_RECT, [3, 3])
PFL_CLOSE_HORIZONTAL_KERNEL = getStructuringElement(MORPH_RECT, [10, 1])
MAX_RECALL_DENOISE_KERNEL = getStructuringElement(MORPH_RECT, [3, 3])
MAX_RECALL_ERODE_KERNEL = getStructuringElement(MORPH_RECT, [2, 2])
MAX_RECALL_CLOSE_KERNEL = getStructuringElement(MORPH_RECT, [20, 1])

View File

@ -1,254 +0,0 @@
from typing import Tuple, Union
def apply_factor(num: Union[int, float], factor: float):
return num * factor
class Sizes:
def __init__(self, factor: float):
raise NotImplementedError()
@property
def TOP_BAR_HEIGHT(self):
...
@property
def SCORE_PANEL(self) -> Tuple[int, int]:
...
@property
def PFL_TOP_FROM_VMID(self):
...
@property
def PFL_LEFT_FROM_HMID(self):
...
@property
def PFL_WIDTH(self):
...
@property
def PFL_FONT_PX(self):
...
@property
def PURE_FAR_GAP(self):
...
@property
def FAR_LOST_GAP(self):
...
@property
def SCORE_BOTTOM_FROM_VMID(self):
...
@property
def SCORE_FONT_PX(self):
...
@property
def SCORE_WIDTH(self):
...
@property
def JACKET_RIGHT_FROM_HOR_MID(self):
...
@property
def JACKET_WIDTH(self):
...
@property
def MR_RT_RIGHT_FROM_HMID(self):
...
@property
def MR_RT_WIDTH(self):
...
@property
def MR_RT_HEIGHT(self):
...
@property
def TITLE_BOTTOM_FROM_VMID(self):
...
@property
def TITLE_FONT_PX(self):
...
@property
def TITLE_WIDTH_RIGHT(self):
...
class SizesV1(Sizes):
def __init__(self, factor: float):
self.factor = factor
def apply_factor(self, num):
return apply_factor(num, self.factor)
@property
def TOP_BAR_HEIGHT(self):
return self.apply_factor(50)
@property
def SCORE_PANEL(self) -> Tuple[int, int]:
return tuple(self.apply_factor(num) for num in [485, 239])
@property
def PFL_TOP_FROM_VMID(self):
return self.apply_factor(135)
@property
def PFL_LEFT_FROM_HMID(self):
return self.apply_factor(5)
@property
def PFL_WIDTH(self):
return self.apply_factor(76)
@property
def PFL_FONT_PX(self):
return self.apply_factor(26)
@property
def PURE_FAR_GAP(self):
return self.apply_factor(12)
@property
def FAR_LOST_GAP(self):
return self.apply_factor(10)
@property
def SCORE_BOTTOM_FROM_VMID(self):
return self.apply_factor(-50)
@property
def SCORE_FONT_PX(self):
return self.apply_factor(45)
@property
def SCORE_WIDTH(self):
return self.apply_factor(280)
@property
def JACKET_RIGHT_FROM_HOR_MID(self):
return self.apply_factor(-235)
@property
def JACKET_WIDTH(self):
return self.apply_factor(375)
@property
def MR_RT_RIGHT_FROM_HMID(self):
return self.apply_factor(-300)
@property
def MR_RT_WIDTH(self):
return self.apply_factor(275)
@property
def MR_RT_HEIGHT(self):
return self.apply_factor(75)
@property
def TITLE_BOTTOM_FROM_VMID(self):
return self.apply_factor(-265)
@property
def TITLE_FONT_PX(self):
return self.apply_factor(40)
@property
def TITLE_WIDTH_RIGHT(self):
return self.apply_factor(275)
class SizesV2(Sizes):
def __init__(self, factor: float):
self.factor = factor
def apply_factor(self, num):
return apply_factor(num, self.factor)
@property
def TOP_BAR_HEIGHT(self):
return self.apply_factor(50)
@property
def SCORE_PANEL(self) -> Tuple[int, int]:
return tuple(self.apply_factor(num) for num in [447, 233])
@property
def PFL_TOP_FROM_VMID(self):
return self.apply_factor(142)
@property
def PFL_LEFT_FROM_HMID(self):
return self.apply_factor(10)
@property
def PFL_WIDTH(self):
return self.apply_factor(60)
@property
def PFL_FONT_PX(self):
return self.apply_factor(16)
@property
def PURE_FAR_GAP(self):
return self.apply_factor(20)
@property
def FAR_LOST_GAP(self):
return self.apply_factor(23)
@property
def SCORE_BOTTOM_FROM_VMID(self):
return self.apply_factor(-50)
@property
def SCORE_FONT_PX(self):
return self.apply_factor(45)
@property
def SCORE_WIDTH(self):
return self.apply_factor(280)
@property
def JACKET_RIGHT_FROM_HOR_MID(self):
return self.apply_factor(-235)
@property
def JACKET_WIDTH(self):
return self.apply_factor(375)
@property
def MR_RT_RIGHT_FROM_HMID(self):
return self.apply_factor(-330)
@property
def MR_RT_WIDTH(self):
return self.apply_factor(330)
@property
def MR_RT_HEIGHT(self):
return self.apply_factor(75)
@property
def TITLE_BOTTOM_FROM_VMID(self):
return self.apply_factor(-265)
@property
def TITLE_FONT_PX(self):
return self.apply_factor(40)
@property
def TITLE_WIDTH_RIGHT(self):
return self.apply_factor(275)

View File

@ -1,2 +0,0 @@
from .common import Extractor
from .sizes import *

View File

@ -1,3 +0,0 @@
from .common import AutoSizes
from .t1 import AutoSizesT1
from .t2 import AutoSizesT2

View File

@ -1,119 +0,0 @@
import cv2
import numpy as np
from .types import Mat
__all__ = [
"GRAY_MIN_HSV",
"GRAY_MAX_HSV",
"WHITE_MIN_HSV",
"WHITE_MAX_HSV",
"PFL_WHITE_MIN_HSV",
"PFL_WHITE_MAX_HSV",
"PST_MIN_HSV",
"PST_MAX_HSV",
"PRS_MIN_HSV",
"PRS_MAX_HSV",
"FTR_MIN_HSV",
"FTR_MAX_HSV",
"BYD_MIN_HSV",
"BYD_MAX_HSV",
"MAX_RECALL_PURPLE_MIN_HSV",
"MAX_RECALL_PURPLE_MAX_HSV",
"mask_gray",
"mask_white",
"mask_pfl_white",
"mask_pst",
"mask_prs",
"mask_ftr",
"mask_byd",
"mask_rating_class",
"mask_max_recall_purple",
]
GRAY_MIN_HSV = np.array([0, 0, 70], np.uint8)
GRAY_MAX_HSV = np.array([0, 0, 200], np.uint8)
GRAY_MIN_BGR = np.array([50] * 3, np.uint8)
GRAY_MAX_BGR = np.array([160] * 3, np.uint8)
WHITE_MIN_HSV = np.array([0, 0, 240], np.uint8)
WHITE_MAX_HSV = np.array([179, 10, 255], np.uint8)
PFL_WHITE_MIN_HSV = np.array([0, 0, 248], np.uint8)
PFL_WHITE_MAX_HSV = np.array([179, 10, 255], np.uint8)
PST_MIN_HSV = np.array([100, 50, 80], np.uint8)
PST_MAX_HSV = np.array([100, 255, 255], np.uint8)
PRS_MIN_HSV = np.array([43, 40, 75], np.uint8)
PRS_MAX_HSV = np.array([50, 155, 190], np.uint8)
FTR_MIN_HSV = np.array([149, 30, 0], np.uint8)
FTR_MAX_HSV = np.array([155, 181, 150], np.uint8)
BYD_MIN_HSV = np.array([170, 50, 50], np.uint8)
BYD_MAX_HSV = np.array([179, 210, 198], np.uint8)
MAX_RECALL_PURPLE_MIN_HSV = np.array([125, 0, 0], np.uint8)
MAX_RECALL_PURPLE_MAX_HSV = np.array([130, 100, 150], np.uint8)
def mask_gray(__img_bgr: Mat):
# bgr_value_equal_mask = all(__img_bgr[:, 1:] == __img_bgr[:, :-1], axis=1)
bgr_value_equal_mask = np.max(__img_bgr, axis=2) - np.min(__img_bgr, axis=2) <= 5
img_bgr = __img_bgr.copy()
img_bgr[~bgr_value_equal_mask] = np.array([0, 0, 0], __img_bgr.dtype)
img_bgr = cv2.erode(img_bgr, cv2.getStructuringElement(cv2.MORPH_RECT, (2, 2)))
img_bgr = cv2.dilate(img_bgr, cv2.getStructuringElement(cv2.MORPH_RECT, (1, 1)))
return cv2.inRange(img_bgr, GRAY_MIN_BGR, GRAY_MAX_BGR)
def mask_white(img_hsv: Mat):
mask = cv2.inRange(img_hsv, WHITE_MIN_HSV, WHITE_MAX_HSV)
mask = cv2.dilate(mask, cv2.getStructuringElement(cv2.MORPH_RECT, (2, 2)))
return mask
def mask_pfl_white(img_hsv: Mat):
mask = cv2.inRange(img_hsv, PFL_WHITE_MIN_HSV, PFL_WHITE_MAX_HSV)
mask = cv2.dilate(mask, cv2.getStructuringElement(cv2.MORPH_RECT, (2, 2)))
return mask
def mask_pst(img_hsv: Mat):
mask = cv2.inRange(img_hsv, PST_MIN_HSV, PST_MAX_HSV)
mask = cv2.dilate(mask, (1, 1))
return mask
def mask_prs(img_hsv: Mat):
mask = cv2.inRange(img_hsv, PRS_MIN_HSV, PRS_MAX_HSV)
mask = cv2.dilate(mask, (1, 1))
return mask
def mask_ftr(img_hsv: Mat):
mask = cv2.inRange(img_hsv, FTR_MIN_HSV, FTR_MAX_HSV)
mask = cv2.dilate(mask, (1, 1))
return mask
def mask_byd(img_hsv: Mat):
mask = cv2.inRange(img_hsv, BYD_MIN_HSV, BYD_MAX_HSV)
mask = cv2.dilate(mask, (2, 2))
return mask
def mask_rating_class(img_hsv: Mat):
pst = mask_pst(img_hsv)
prs = mask_prs(img_hsv)
ftr = mask_ftr(img_hsv)
byd = mask_byd(img_hsv)
return cv2.bitwise_or(byd, cv2.bitwise_or(ftr, cv2.bitwise_or(pst, prs)))
def mask_max_recall_purple(img_hsv: Mat):
mask = cv2.inRange(img_hsv, MAX_RECALL_PURPLE_MIN_HSV, MAX_RECALL_PURPLE_MAX_HSV)
mask = cv2.dilate(mask, (2, 2))
return mask

View File

@ -1,55 +0,0 @@
import cv2
class Masker:
@staticmethod
def pure(roi_bgr: cv2.Mat) -> cv2.Mat:
raise NotImplementedError()
@staticmethod
def far(roi_bgr: cv2.Mat) -> cv2.Mat:
raise NotImplementedError()
@staticmethod
def lost(roi_bgr: cv2.Mat) -> cv2.Mat:
raise NotImplementedError()
@staticmethod
def score(roi_bgr: cv2.Mat) -> cv2.Mat:
raise NotImplementedError()
@staticmethod
def rating_class_pst(roi_bgr: cv2.Mat) -> cv2.Mat:
raise NotImplementedError()
@staticmethod
def rating_class_prs(roi_bgr: cv2.Mat) -> cv2.Mat:
raise NotImplementedError()
@staticmethod
def rating_class_ftr(roi_bgr: cv2.Mat) -> cv2.Mat:
raise NotImplementedError()
@staticmethod
def rating_class_byd(roi_bgr: cv2.Mat) -> cv2.Mat:
raise NotImplementedError()
@staticmethod
def max_recall(roi_bgr: cv2.Mat) -> cv2.Mat:
raise NotImplementedError()
@staticmethod
def clear_status_track_lost(roi_bgr: cv2.Mat) -> cv2.Mat:
raise NotImplementedError()
@staticmethod
def clear_status_track_complete(roi_bgr: cv2.Mat) -> cv2.Mat:
raise NotImplementedError()
@staticmethod
def clear_status_full_recall(roi_bgr: cv2.Mat) -> cv2.Mat:
raise NotImplementedError()
@staticmethod
def clear_status_pure_memory(roi_bgr: cv2.Mat) -> cv2.Mat:
raise NotImplementedError()

View File

@ -7,7 +7,6 @@ import numpy as np
from numpy.linalg import norm from numpy.linalg import norm
from .crop import crop_xywh from .crop import crop_xywh
from .mask import mask_byd, mask_ftr, mask_prs, mask_pst
from .types import Mat, cv2_ml_KNearest from .types import Mat, cv2_ml_KNearest
__all__ = [ __all__ = [
@ -199,13 +198,3 @@ def ocr_digits_by_contour_knn(
) -> int: ) -> int:
samples = ocr_digits_by_contour_get_samples(__roi_gray, size) samples = ocr_digits_by_contour_get_samples(__roi_gray, size)
return ocr_digit_samples_knn(samples, knn_model, k) return ocr_digit_samples_knn(samples, knn_model, k)
def ocr_rating_class(roi_hsv: Mat):
mask_results = [
mask_pst(roi_hsv),
mask_prs(roi_hsv),
mask_ftr(roi_hsv),
mask_byd(roi_hsv),
]
return max(enumerate(mask_results), key=lambda e: np.count_nonzero(e[1]))[0]

View File

@ -1,110 +0,0 @@
import io
import sqlite3
from gzip import GzipFile
from typing import Tuple
import cv2
import numpy as np
from .types import Mat
class SIFTDatabase:
def __init__(self, db_path: str, load: bool = True):
self.__db_path = db_path
self.__tags = []
self.__descriptors = []
self.__size = None
self.__sift = cv2.SIFT_create()
self.__bf_matcher = cv2.BFMatcher()
if load:
self.load_db()
@property
def db_path(self):
return self.__db_path
@db_path.setter
def db_path(self, value):
self.__db_path = value
@property
def tags(self):
return self.__tags
@property
def descriptors(self):
return self.__descriptors
@property
def size(self):
return self.__size
@size.setter
def size(self, value: Tuple[int, int]):
self.__size = value
@property
def sift(self):
return self.__sift
@property
def bf_matcher(self):
return self.__bf_matcher
def load_db(self):
conn = sqlite3.connect(self.db_path)
with conn:
cursor = conn.cursor()
size_str = cursor.execute(
"SELECT value FROM properties WHERE id = 'size'"
).fetchone()[0]
sizr_str_arr = size_str.split(", ")
self.size = tuple(int(s) for s in sizr_str_arr)
tag__descriptors_bytes = cursor.execute(
"SELECT tag, descriptors FROM sift"
).fetchall()
gzipped = int(
cursor.execute(
"SELECT value FROM properties WHERE id = 'gzip'"
).fetchone()[0]
)
for tag, descriptor_bytes in tag__descriptors_bytes:
buffer = io.BytesIO(descriptor_bytes)
self.tags.append(tag)
if gzipped == 0:
self.descriptors.append(np.load(buffer))
else:
gzipped_buffer = GzipFile(None, "rb", fileobj=buffer)
self.descriptors.append(np.load(gzipped_buffer))
def lookup_img(
self,
__img: Mat,
*,
sift=None,
bf=None,
) -> Tuple[str, float]:
sift = sift or self.sift
bf = bf or self.bf_matcher
img = __img.copy()
if self.size is not None:
img = cv2.resize(img, self.size)
_, descriptors = sift.detectAndCompute(img, None)
good_results = []
for des in self.descriptors:
matches = bf.knnMatch(descriptors, des, k=2)
good = sum(m.distance < 0.75 * n.distance for m, n in matches)
good_results.append(good)
best_match_index = max(enumerate(good_results), key=lambda i: i[1])[0]
return (
self.tags[best_match_index],
good_results[best_match_index] / len(descriptors),
)