Compare commits

...

3 Commits

Author SHA1 Message Date
07df8e3b56
wip: SizesV2 2023-09-27 17:15:46 +08:00
be87a0fbe1
feat!: ImagePHashDatabase 2023-09-27 17:15:21 +08:00
65430a30b8
chore!: split Sizes 2023-09-27 10:54:55 +08:00
6 changed files with 395 additions and 193 deletions

View File

@ -3,9 +3,11 @@ from typing import List, Optional, Tuple
import cv2 import cv2
import numpy as np import numpy as np
from PIL import Image
from ....crop import crop_xywh from ....crop import crop_xywh
from ....ocr import FixRects, ocr_digits_by_contour_knn, preprocess_hog from ....ocr import FixRects, ocr_digits_by_contour_knn, preprocess_hog
from ....phash_db import ImagePHashDatabase
from ....sift_db import SIFTDatabase from ....sift_db import SIFTDatabase
from ....types import Mat, cv2_ml_KNearest from ....types import Mat, cv2_ml_KNearest
from ....utils import construct_int_xywh_rect from ....utils import construct_int_xywh_rect
@ -19,12 +21,12 @@ class ChieriBotV4Ocr:
self, self,
score_knn: cv2_ml_KNearest, score_knn: cv2_ml_KNearest,
pfl_knn: cv2_ml_KNearest, pfl_knn: cv2_ml_KNearest,
sift_db: SIFTDatabase, phash_db: ImagePHashDatabase,
factor: Optional[float] = 1.0, factor: Optional[float] = 1.0,
): ):
self.__score_knn = score_knn self.__score_knn = score_knn
self.__pfl_knn = pfl_knn self.__pfl_knn = pfl_knn
self.__sift_db = sift_db self.__phash_db = phash_db
self.__rois = ChieriBotV4Rois(factor) self.__rois = ChieriBotV4Rois(factor)
@property @property
@ -44,12 +46,12 @@ class ChieriBotV4Ocr:
self.__pfl_knn = knn_digits_model self.__pfl_knn = knn_digits_model
@property @property
def sift_db(self): def phash_db(self):
return self.__sift_db return self.__phash_db
@sift_db.setter @phash_db.setter
def sift_db(self, sift_db: SIFTDatabase): def phash_db(self, phash_db: ImagePHashDatabase):
self.__sift_db = sift_db self.__phash_db = phash_db
@property @property
def rois(self): def rois(self):
@ -98,7 +100,7 @@ class ChieriBotV4Ocr:
jacket_roi = cv2.cvtColor( jacket_roi = cv2.cvtColor(
crop_xywh(component_bgr, jacket_rect), cv2.COLOR_BGR2GRAY crop_xywh(component_bgr, jacket_rect), cv2.COLOR_BGR2GRAY
) )
return self.sift_db.lookup_img(jacket_roi)[0] return self.phash_db.lookup_image(Image.fromarray(jacket_roi))[0]
# def ocr_component_score_paddle(self, component_bgr: Mat) -> int: # def ocr_component_score_paddle(self, component_bgr: Mat) -> int:
# # sourcery skip: inline-immediately-returned-variable # # sourcery skip: inline-immediately-returned-variable

View File

@ -4,9 +4,19 @@ from typing import Sequence
import cv2 import cv2
import numpy as np import numpy as np
from PIL import Image
from ...crop import crop_xywh from ...crop import crop_xywh
from ...mask import mask_byd, mask_ftr, mask_gray, mask_prs, mask_pst, mask_white from ...mask import (
mask_byd,
mask_ftr,
mask_gray,
mask_max_recall_purple,
mask_pfl_white,
mask_prs,
mask_pst,
mask_white,
)
from ...ocr import ( from ...ocr import (
FixRects, FixRects,
ocr_digit_samples_knn, ocr_digit_samples_knn,
@ -14,18 +24,20 @@ from ...ocr import (
preprocess_hog, preprocess_hog,
resize_fill_square, resize_fill_square,
) )
from ...phash_db import ImagePHashDatabase
from ...sift_db import SIFTDatabase from ...sift_db import SIFTDatabase
from ...types import Mat, cv2_ml_KNearest from ...types import Mat, cv2_ml_KNearest
from ..shared import DeviceOcrResult from ..shared import DeviceOcrResult
from .preprocess import find_digits_preprocess from .preprocess import find_digits_preprocess
from .rois import DeviceV2Rois from .rois import DeviceV2Rois
from .shared import MAX_RECALL_CLOSE_KERNEL from .shared import MAX_RECALL_CLOSE_KERNEL
from .sizes import SizesV2
class DeviceV2Ocr: class DeviceV2Ocr:
def __init__(self, knn_model: cv2_ml_KNearest, sift_db: SIFTDatabase): def __init__(self, knn_model: cv2_ml_KNearest, phash_db: ImagePHashDatabase):
self.__knn_model = knn_model self.__knn_model = knn_model
self.__sift_db = sift_db self.__phash_db = phash_db
@property @property
def knn_model(self): def knn_model(self):
@ -38,14 +50,14 @@ class DeviceV2Ocr:
self.__knn_model = value self.__knn_model = value
@property @property
def sift_db(self): def phash_db(self):
if not self.__sift_db: if not self.__phash_db:
raise ValueError("`sift_db` unset.") raise ValueError("`phash_db` unset.")
return self.__sift_db return self.__phash_db
@sift_db.setter @phash_db.setter
def sift_db(self, value: SIFTDatabase): def phash_db(self, value: SIFTDatabase):
self.__sift_db = value self.__phash_db = value
@lru_cache @lru_cache
def _get_digit_widths(self, num_list: Sequence[int], factor: float): def _get_digit_widths(self, num_list: Sequence[int], factor: float):
@ -86,7 +98,7 @@ class DeviceV2Ocr:
def ocr_song_id(self, rois: DeviceV2Rois): def ocr_song_id(self, rois: DeviceV2Rois):
jacket = cv2.cvtColor(rois.jacket, cv2.COLOR_BGR2GRAY) jacket = cv2.cvtColor(rois.jacket, cv2.COLOR_BGR2GRAY)
return self.sift_db.lookup_img(jacket)[0] return self.phash_db.lookup_image(Image.fromarray(jacket))[0]
def ocr_rating_class(self, rois: DeviceV2Rois): def ocr_rating_class(self, rois: DeviceV2Rois):
roi = cv2.cvtColor(rois.max_recall_rating_class, cv2.COLOR_BGR2HSV) roi = cv2.cvtColor(rois.max_recall_rating_class, cv2.COLOR_BGR2HSV)
@ -103,20 +115,33 @@ class DeviceV2Ocr:
roi = cv2.fillPoly(roi, [contour], [0]) roi = cv2.fillPoly(roi, [contour], [0])
return ocr_digits_by_contour_knn(roi, self.knn_model) return ocr_digits_by_contour_knn(roi, self.knn_model)
def mask_pfl(self, pfl_roi: Mat, rois: DeviceV2Rois):
return (
mask_pfl_white(cv2.cvtColor(pfl_roi, cv2.COLOR_BGR2HSV))
if isinstance(rois.sizes, SizesV2)
else mask_gray(pfl_roi)
)
def ocr_pure(self, rois: DeviceV2Rois): def ocr_pure(self, rois: DeviceV2Rois):
roi = mask_gray(rois.pure) roi = self.mask_pfl(rois.pure, rois)
return self._base_ocr_pfl(roi, rois.sizes.factor) return self._base_ocr_pfl(roi, rois.sizes.factor)
def ocr_far(self, rois: DeviceV2Rois): def ocr_far(self, rois: DeviceV2Rois):
roi = mask_gray(rois.far) roi = self.mask_pfl(rois.far, rois)
return self._base_ocr_pfl(roi, rois.sizes.factor) return self._base_ocr_pfl(roi, rois.sizes.factor)
def ocr_lost(self, rois: DeviceV2Rois): def ocr_lost(self, rois: DeviceV2Rois):
roi = mask_gray(rois.lost) roi = self.mask_pfl(rois.lost, rois)
return self._base_ocr_pfl(roi, rois.sizes.factor) return self._base_ocr_pfl(roi, rois.sizes.factor)
def ocr_max_recall(self, rois: DeviceV2Rois): def ocr_max_recall(self, rois: DeviceV2Rois):
roi = mask_gray(rois.max_recall_rating_class) roi = (
mask_max_recall_purple(
cv2.cvtColor(rois.max_recall_rating_class, cv2.COLOR_BGR2HSV)
)
if isinstance(rois.sizes, SizesV2)
else mask_gray(rois.max_recall_rating_class)
)
roi_closed = cv2.morphologyEx(roi, cv2.MORPH_CLOSE, MAX_RECALL_CLOSE_KERNEL) roi_closed = cv2.morphologyEx(roi, cv2.MORPH_CLOSE, MAX_RECALL_CLOSE_KERNEL)
contours, _ = cv2.findContours( contours, _ = cv2.findContours(
roi_closed, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE roi_closed, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE

View File

@ -1,183 +1,15 @@
from typing import Tuple, Union from typing import Union
from ...crop import crop_black_edges, crop_xywh from ...crop import crop_black_edges, crop_xywh
from ...types import Mat, XYWHRect from ...types import Mat, XYWHRect
from .definition import DeviceV2 from .definition import DeviceV2
from .sizes import Sizes, SizesV1
def to_int(num: Union[int, float]) -> int: def to_int(num: Union[int, float]) -> int:
return round(num) return round(num)
def apply_factor(num: Union[int, float], factor: float):
return num * factor
class Sizes:
def __init__(self, factor: float):
raise NotImplementedError()
@property
def TOP_BAR_HEIGHT(self):
...
@property
def SCORE_PANEL(self) -> Tuple[int, int]:
...
@property
def PFL_TOP_FROM_VMID(self):
...
@property
def PFL_LEFT_FROM_HMID(self):
...
@property
def PFL_WIDTH(self):
...
@property
def PFL_FONT_PX(self):
...
@property
def PURE_FAR_GAP(self):
...
@property
def FAR_LOST_GAP(self):
...
@property
def SCORE_BOTTOM_FROM_VMID(self):
...
@property
def SCORE_FONT_PX(self):
...
@property
def SCORE_WIDTH(self):
...
@property
def JACKET_RIGHT_FROM_HOR_MID(self):
...
@property
def JACKET_WIDTH(self):
...
@property
def MR_RT_RIGHT_FROM_HMID(self):
...
@property
def MR_RT_WIDTH(self):
...
@property
def MR_RT_HEIGHT(self):
...
@property
def TITLE_BOTTOM_FROM_VMID(self):
...
@property
def TITLE_FONT_PX(self):
...
@property
def TITLE_WIDTH_RIGHT(self):
...
class SizesV1(Sizes):
def __init__(self, factor: float):
self.factor = factor
def apply_factor(self, num):
return apply_factor(num, self.factor)
@property
def TOP_BAR_HEIGHT(self):
return self.apply_factor(50)
@property
def SCORE_PANEL(self) -> Tuple[int, int]:
return tuple(self.apply_factor(num) for num in [485, 239])
@property
def PFL_TOP_FROM_VMID(self):
return self.apply_factor(135)
@property
def PFL_LEFT_FROM_HMID(self):
return self.apply_factor(5)
@property
def PFL_WIDTH(self):
return self.apply_factor(76)
@property
def PFL_FONT_PX(self):
return self.apply_factor(26)
@property
def PURE_FAR_GAP(self):
return self.apply_factor(12)
@property
def FAR_LOST_GAP(self):
return self.apply_factor(10)
@property
def SCORE_BOTTOM_FROM_VMID(self):
return self.apply_factor(-50)
@property
def SCORE_FONT_PX(self):
return self.apply_factor(45)
@property
def SCORE_WIDTH(self):
return self.apply_factor(280)
@property
def JACKET_RIGHT_FROM_HOR_MID(self):
return self.apply_factor(-235)
@property
def JACKET_WIDTH(self):
return self.apply_factor(375)
@property
def MR_RT_RIGHT_FROM_HMID(self):
return self.apply_factor(-300)
@property
def MR_RT_WIDTH(self):
return self.apply_factor(275)
@property
def MR_RT_HEIGHT(self):
return self.apply_factor(75)
@property
def TITLE_BOTTOM_FROM_VMID(self):
return self.apply_factor(-265)
@property
def TITLE_FONT_PX(self):
return self.apply_factor(40)
@property
def TITLE_WIDTH_RIGHT(self):
return self.apply_factor(275)
class DeviceV2Rois: class DeviceV2Rois:
def __init__(self, device: DeviceV2, img: Mat): def __init__(self, device: DeviceV2, img: Mat):
self.device = device self.device = device

View File

@ -0,0 +1,254 @@
from typing import Tuple, Union
def apply_factor(num: Union[int, float], factor: float):
return num * factor
class Sizes:
def __init__(self, factor: float):
raise NotImplementedError()
@property
def TOP_BAR_HEIGHT(self):
...
@property
def SCORE_PANEL(self) -> Tuple[int, int]:
...
@property
def PFL_TOP_FROM_VMID(self):
...
@property
def PFL_LEFT_FROM_HMID(self):
...
@property
def PFL_WIDTH(self):
...
@property
def PFL_FONT_PX(self):
...
@property
def PURE_FAR_GAP(self):
...
@property
def FAR_LOST_GAP(self):
...
@property
def SCORE_BOTTOM_FROM_VMID(self):
...
@property
def SCORE_FONT_PX(self):
...
@property
def SCORE_WIDTH(self):
...
@property
def JACKET_RIGHT_FROM_HOR_MID(self):
...
@property
def JACKET_WIDTH(self):
...
@property
def MR_RT_RIGHT_FROM_HMID(self):
...
@property
def MR_RT_WIDTH(self):
...
@property
def MR_RT_HEIGHT(self):
...
@property
def TITLE_BOTTOM_FROM_VMID(self):
...
@property
def TITLE_FONT_PX(self):
...
@property
def TITLE_WIDTH_RIGHT(self):
...
class SizesV1(Sizes):
def __init__(self, factor: float):
self.factor = factor
def apply_factor(self, num):
return apply_factor(num, self.factor)
@property
def TOP_BAR_HEIGHT(self):
return self.apply_factor(50)
@property
def SCORE_PANEL(self) -> Tuple[int, int]:
return tuple(self.apply_factor(num) for num in [485, 239])
@property
def PFL_TOP_FROM_VMID(self):
return self.apply_factor(135)
@property
def PFL_LEFT_FROM_HMID(self):
return self.apply_factor(5)
@property
def PFL_WIDTH(self):
return self.apply_factor(76)
@property
def PFL_FONT_PX(self):
return self.apply_factor(26)
@property
def PURE_FAR_GAP(self):
return self.apply_factor(12)
@property
def FAR_LOST_GAP(self):
return self.apply_factor(10)
@property
def SCORE_BOTTOM_FROM_VMID(self):
return self.apply_factor(-50)
@property
def SCORE_FONT_PX(self):
return self.apply_factor(45)
@property
def SCORE_WIDTH(self):
return self.apply_factor(280)
@property
def JACKET_RIGHT_FROM_HOR_MID(self):
return self.apply_factor(-235)
@property
def JACKET_WIDTH(self):
return self.apply_factor(375)
@property
def MR_RT_RIGHT_FROM_HMID(self):
return self.apply_factor(-300)
@property
def MR_RT_WIDTH(self):
return self.apply_factor(275)
@property
def MR_RT_HEIGHT(self):
return self.apply_factor(75)
@property
def TITLE_BOTTOM_FROM_VMID(self):
return self.apply_factor(-265)
@property
def TITLE_FONT_PX(self):
return self.apply_factor(40)
@property
def TITLE_WIDTH_RIGHT(self):
return self.apply_factor(275)
class SizesV2(Sizes):
def __init__(self, factor: float):
self.factor = factor
def apply_factor(self, num):
return apply_factor(num, self.factor)
@property
def TOP_BAR_HEIGHT(self):
return self.apply_factor(50)
@property
def SCORE_PANEL(self) -> Tuple[int, int]:
return tuple(self.apply_factor(num) for num in [447, 233])
@property
def PFL_TOP_FROM_VMID(self):
return self.apply_factor(142)
@property
def PFL_LEFT_FROM_HMID(self):
return self.apply_factor(10)
@property
def PFL_WIDTH(self):
return self.apply_factor(60)
@property
def PFL_FONT_PX(self):
return self.apply_factor(16)
@property
def PURE_FAR_GAP(self):
return self.apply_factor(20)
@property
def FAR_LOST_GAP(self):
return self.apply_factor(23)
@property
def SCORE_BOTTOM_FROM_VMID(self):
return self.apply_factor(-50)
@property
def SCORE_FONT_PX(self):
return self.apply_factor(45)
@property
def SCORE_WIDTH(self):
return self.apply_factor(280)
@property
def JACKET_RIGHT_FROM_HOR_MID(self):
return self.apply_factor(-235)
@property
def JACKET_WIDTH(self):
return self.apply_factor(375)
@property
def MR_RT_RIGHT_FROM_HMID(self):
return self.apply_factor(-330)
@property
def MR_RT_WIDTH(self):
return self.apply_factor(330)
@property
def MR_RT_HEIGHT(self):
return self.apply_factor(75)
@property
def TITLE_BOTTOM_FROM_VMID(self):
return self.apply_factor(-265)
@property
def TITLE_FONT_PX(self):
return self.apply_factor(40)
@property
def TITLE_WIDTH_RIGHT(self):
return self.apply_factor(275)

View File

@ -8,6 +8,8 @@ __all__ = [
"GRAY_MAX_HSV", "GRAY_MAX_HSV",
"WHITE_MIN_HSV", "WHITE_MIN_HSV",
"WHITE_MAX_HSV", "WHITE_MAX_HSV",
"PFL_WHITE_MIN_HSV",
"PFL_WHITE_MAX_HSV",
"PST_MIN_HSV", "PST_MIN_HSV",
"PST_MAX_HSV", "PST_MAX_HSV",
"PRS_MIN_HSV", "PRS_MIN_HSV",
@ -16,13 +18,17 @@ __all__ = [
"FTR_MAX_HSV", "FTR_MAX_HSV",
"BYD_MIN_HSV", "BYD_MIN_HSV",
"BYD_MAX_HSV", "BYD_MAX_HSV",
"MAX_RECALL_PURPLE_MIN_HSV",
"MAX_RECALL_PURPLE_MAX_HSV",
"mask_gray", "mask_gray",
"mask_white", "mask_white",
"mask_pfl_white",
"mask_pst", "mask_pst",
"mask_prs", "mask_prs",
"mask_ftr", "mask_ftr",
"mask_byd", "mask_byd",
"mask_rating_class", "mask_rating_class",
"mask_max_recall_purple",
] ]
GRAY_MIN_HSV = np.array([0, 0, 70], np.uint8) GRAY_MIN_HSV = np.array([0, 0, 70], np.uint8)
@ -34,6 +40,9 @@ GRAY_MAX_BGR = np.array([160] * 3, np.uint8)
WHITE_MIN_HSV = np.array([0, 0, 240], np.uint8) WHITE_MIN_HSV = np.array([0, 0, 240], np.uint8)
WHITE_MAX_HSV = np.array([179, 10, 255], np.uint8) WHITE_MAX_HSV = np.array([179, 10, 255], np.uint8)
PFL_WHITE_MIN_HSV = np.array([0, 0, 248], np.uint8)
PFL_WHITE_MAX_HSV = np.array([179, 10, 255], np.uint8)
PST_MIN_HSV = np.array([100, 50, 80], np.uint8) PST_MIN_HSV = np.array([100, 50, 80], np.uint8)
PST_MAX_HSV = np.array([100, 255, 255], np.uint8) PST_MAX_HSV = np.array([100, 255, 255], np.uint8)
@ -46,6 +55,9 @@ FTR_MAX_HSV = np.array([155, 181, 150], np.uint8)
BYD_MIN_HSV = np.array([170, 50, 50], np.uint8) BYD_MIN_HSV = np.array([170, 50, 50], np.uint8)
BYD_MAX_HSV = np.array([179, 210, 198], np.uint8) BYD_MAX_HSV = np.array([179, 210, 198], np.uint8)
MAX_RECALL_PURPLE_MIN_HSV = np.array([125, 0, 0], np.uint8)
MAX_RECALL_PURPLE_MAX_HSV = np.array([130, 100, 150], np.uint8)
def mask_gray(__img_bgr: Mat): def mask_gray(__img_bgr: Mat):
# bgr_value_equal_mask = all(__img_bgr[:, 1:] == __img_bgr[:, :-1], axis=1) # bgr_value_equal_mask = all(__img_bgr[:, 1:] == __img_bgr[:, :-1], axis=1)
@ -63,6 +75,12 @@ def mask_white(img_hsv: Mat):
return mask return mask
def mask_pfl_white(img_hsv: Mat):
mask = cv2.inRange(img_hsv, PFL_WHITE_MIN_HSV, PFL_WHITE_MAX_HSV)
mask = cv2.dilate(mask, cv2.getStructuringElement(cv2.MORPH_RECT, (2, 2)))
return mask
def mask_pst(img_hsv: Mat): def mask_pst(img_hsv: Mat):
mask = cv2.inRange(img_hsv, PST_MIN_HSV, PST_MAX_HSV) mask = cv2.inRange(img_hsv, PST_MIN_HSV, PST_MAX_HSV)
mask = cv2.dilate(mask, (1, 1)) mask = cv2.dilate(mask, (1, 1))
@ -93,3 +111,9 @@ def mask_rating_class(img_hsv: Mat):
ftr = mask_ftr(img_hsv) ftr = mask_ftr(img_hsv)
byd = mask_byd(img_hsv) byd = mask_byd(img_hsv)
return cv2.bitwise_or(byd, cv2.bitwise_or(ftr, cv2.bitwise_or(pst, prs))) return cv2.bitwise_or(byd, cv2.bitwise_or(ftr, cv2.bitwise_or(pst, prs)))
def mask_max_recall_purple(img_hsv: Mat):
mask = cv2.inRange(img_hsv, MAX_RECALL_PURPLE_MIN_HSV, MAX_RECALL_PURPLE_MAX_HSV)
mask = cv2.dilate(mask, (2, 2))
return mask

View File

@ -0,0 +1,65 @@
import sqlite3
import imagehash
import numpy as np
from PIL import Image
def hamming_distance_sql_function(user_input, db_entry) -> int:
return np.count_nonzero(
np.frombuffer(user_input, bool) ^ np.frombuffer(db_entry, bool)
)
class ImagePHashDatabase:
def __init__(self, db_path: str):
with sqlite3.connect(db_path) as conn:
self.hash_size = int(
conn.execute(
"SELECT value FROM properties WHERE key = 'hash_size'"
).fetchone()[0]
)
self.highfreq_factor = int(
conn.execute(
"SELECT value FROM properties WHERE key = 'highfreq_factor'"
).fetchone()[0]
)
self.built_timestamp = int(
conn.execute(
"SELECT value FROM properties WHERE key = 'built_timestamp'"
).fetchone()[0]
)
# self.conn.create_function(
# "HAMMING_DISTANCE",
# 2,
# hamming_distance_sql_function,
# deterministic=True,
# )
self.ids = [i[0] for i in conn.execute("SELECT id FROM hashes").fetchall()]
self.hashes_byte = [
i[0] for i in conn.execute("SELECT hash FROM hashes").fetchall()
]
self.hashes = [np.frombuffer(hb, bool) for hb in self.hashes_byte]
self.hashes_slice_size = round(len(self.hashes_byte[0]) * 0.25)
self.hashes_head = [h[: self.hashes_slice_size] for h in self.hashes]
self.hashes_tail = [h[-self.hashes_slice_size :] for h in self.hashes]
def lookup_hash(self, image_hash: imagehash.ImageHash, *, limit: int = 5):
image_hash = image_hash.hash.flatten()
# image_hash_head = image_hash[: self.hashes_slice_size]
# image_hash_tail = image_hash[-self.hashes_slice_size :]
# head_xor_results = [image_hash_head ^ h for h in self.hashes]
# tail_xor_results = [image_hash_head ^ h for h in self.hashes]
xor_results = [
(id, np.count_nonzero(image_hash ^ h))
for id, h in zip(self.ids, self.hashes)
]
return sorted(xor_results, key=lambda r: r[1])[:limit]
def lookup_image(self, pil_image: Image.Image):
image_hash = imagehash.phash(
pil_image, hash_size=self.hash_size, highfreq_factor=self.highfreq_factor
)
return self.lookup_hash(image_hash)[0]