mirror of
https://github.com/283375/arcaea-offline-ocr.git
synced 2025-07-01 20:36:27 +00:00
Compare commits
44 Commits
8389586ccd
...
v0.0.99
Author | SHA1 | Date | |
---|---|---|---|
854d5558cf
|
|||
df77421a34
|
|||
2241230a7a
|
|||
fb4b1fb9b8
|
|||
00cd32dfdc
|
|||
17f6c2bac7 | |||
76e6adbbf7
|
|||
288ccddfa1
|
|||
58d5022952
|
|||
80404c436f
|
|||
bdf748bc63
|
|||
c864414b88
|
|||
0fbd33645b
|
|||
2643b43248
|
|||
f9c867e180
|
|||
f2f854040f
|
|||
cf46bf7a59
|
|||
122a546174
|
|||
42bcd7b430
|
|||
3400df2d52
|
|||
4fd31b1e9b
|
|||
82229b8b5c
|
|||
2895eb7233
|
|||
02599780e3
|
|||
5e0642c832
|
|||
ede2b4ec51
|
|||
6a19ead8d1
|
|||
d13076c667
|
|||
1aa71685ce
|
|||
d52d545864
|
|||
c009a28f92
|
|||
d5ccbd5a01
|
|||
0d8e4dea8e
|
|||
2b01f68a73
|
|||
897705d23d
|
|||
c6aba3a7e9
|
|||
f7cfb84135
|
|||
8d33491d9b
|
|||
580744b641
|
|||
da42699ac8
|
|||
151b1fd6d8
|
|||
07df8e3b56
|
|||
be87a0fbe1
|
|||
65430a30b8
|
48
.github/workflows/build-and-draft-release.yml
vendored
Normal file
48
.github/workflows/build-and-draft-release.yml
vendored
Normal file
@ -0,0 +1,48 @@
|
||||
name: "Build and draft a release"
|
||||
|
||||
on:
|
||||
workflow_dispatch:
|
||||
push:
|
||||
tags:
|
||||
- "v[0-9]+.[0-9]+.[0-9]+"
|
||||
|
||||
permissions:
|
||||
contents: write
|
||||
discussions: write
|
||||
|
||||
jobs:
|
||||
build-and-draft-release:
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- name: Checkout
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
fetch-depth: 0
|
||||
|
||||
- name: Set up Python environment
|
||||
uses: actions/setup-python@v5
|
||||
with:
|
||||
python-version: "3.x"
|
||||
|
||||
- name: Build package
|
||||
run: |
|
||||
pip install build
|
||||
python -m build
|
||||
|
||||
- name: Remove `v` in tag name
|
||||
uses: mad9000/actions-find-and-replace-string@5
|
||||
id: tagNameReplaced
|
||||
with:
|
||||
source: ${{ github.ref_name }}
|
||||
find: "v"
|
||||
replace: ""
|
||||
|
||||
- name: Draft a release
|
||||
uses: softprops/action-gh-release@v2
|
||||
with:
|
||||
discussion_category_name: New releases
|
||||
draft: true
|
||||
generate_release_notes: true
|
||||
files: |
|
||||
dist/arcaea_offline_ocr-${{ steps.tagNameReplaced.outputs.value }}*.whl
|
||||
dist/arcaea-offline-ocr-${{ steps.tagNameReplaced.outputs.value }}.tar.gz
|
2
.gitignore
vendored
2
.gitignore
vendored
@ -1,6 +1,8 @@
|
||||
__debug*
|
||||
.vscode/
|
||||
|
||||
*venv*/
|
||||
|
||||
# Byte-compiled / optimized / DLL files
|
||||
__pycache__/
|
||||
*.py[cod]
|
||||
|
@ -8,9 +8,7 @@ repos:
|
||||
rev: 23.1.0
|
||||
hooks:
|
||||
- id: black
|
||||
exclude: _builtin_templates.py
|
||||
- repo: https://github.com/PyCQA/isort
|
||||
rev: 5.12.0
|
||||
hooks:
|
||||
- id: isort
|
||||
exclude: _builtin_templates.py
|
||||
|
675
LICENSE
Normal file
675
LICENSE
Normal file
@ -0,0 +1,675 @@
|
||||
# GNU GENERAL PUBLIC LICENSE
|
||||
|
||||
Version 3, 29 June 2007
|
||||
|
||||
Copyright (C) 2007 Free Software Foundation, Inc.
|
||||
<https://fsf.org/>
|
||||
|
||||
Everyone is permitted to copy and distribute verbatim copies of this
|
||||
license document, but changing it is not allowed.
|
||||
|
||||
## Preamble
|
||||
|
||||
The GNU General Public License is a free, copyleft license for
|
||||
software and other kinds of works.
|
||||
|
||||
The licenses for most software and other practical works are designed
|
||||
to take away your freedom to share and change the works. By contrast,
|
||||
the GNU General Public License is intended to guarantee your freedom
|
||||
to share and change all versions of a program--to make sure it remains
|
||||
free software for all its users. We, the Free Software Foundation, use
|
||||
the GNU General Public License for most of our software; it applies
|
||||
also to any other work released this way by its authors. You can apply
|
||||
it to your programs, too.
|
||||
|
||||
When we speak of free software, we are referring to freedom, not
|
||||
price. Our General Public Licenses are designed to make sure that you
|
||||
have the freedom to distribute copies of free software (and charge for
|
||||
them if you wish), that you receive source code or can get it if you
|
||||
want it, that you can change the software or use pieces of it in new
|
||||
free programs, and that you know you can do these things.
|
||||
|
||||
To protect your rights, we need to prevent others from denying you
|
||||
these rights or asking you to surrender the rights. Therefore, you
|
||||
have certain responsibilities if you distribute copies of the
|
||||
software, or if you modify it: responsibilities to respect the freedom
|
||||
of others.
|
||||
|
||||
For example, if you distribute copies of such a program, whether
|
||||
gratis or for a fee, you must pass on to the recipients the same
|
||||
freedoms that you received. You must make sure that they, too, receive
|
||||
or can get the source code. And you must show them these terms so they
|
||||
know their rights.
|
||||
|
||||
Developers that use the GNU GPL protect your rights with two steps:
|
||||
(1) assert copyright on the software, and (2) offer you this License
|
||||
giving you legal permission to copy, distribute and/or modify it.
|
||||
|
||||
For the developers' and authors' protection, the GPL clearly explains
|
||||
that there is no warranty for this free software. For both users' and
|
||||
authors' sake, the GPL requires that modified versions be marked as
|
||||
changed, so that their problems will not be attributed erroneously to
|
||||
authors of previous versions.
|
||||
|
||||
Some devices are designed to deny users access to install or run
|
||||
modified versions of the software inside them, although the
|
||||
manufacturer can do so. This is fundamentally incompatible with the
|
||||
aim of protecting users' freedom to change the software. The
|
||||
systematic pattern of such abuse occurs in the area of products for
|
||||
individuals to use, which is precisely where it is most unacceptable.
|
||||
Therefore, we have designed this version of the GPL to prohibit the
|
||||
practice for those products. If such problems arise substantially in
|
||||
other domains, we stand ready to extend this provision to those
|
||||
domains in future versions of the GPL, as needed to protect the
|
||||
freedom of users.
|
||||
|
||||
Finally, every program is threatened constantly by software patents.
|
||||
States should not allow patents to restrict development and use of
|
||||
software on general-purpose computers, but in those that do, we wish
|
||||
to avoid the special danger that patents applied to a free program
|
||||
could make it effectively proprietary. To prevent this, the GPL
|
||||
assures that patents cannot be used to render the program non-free.
|
||||
|
||||
The precise terms and conditions for copying, distribution and
|
||||
modification follow.
|
||||
|
||||
## TERMS AND CONDITIONS
|
||||
|
||||
### 0. Definitions.
|
||||
|
||||
"This License" refers to version 3 of the GNU General Public License.
|
||||
|
||||
"Copyright" also means copyright-like laws that apply to other kinds
|
||||
of works, such as semiconductor masks.
|
||||
|
||||
"The Program" refers to any copyrightable work licensed under this
|
||||
License. Each licensee is addressed as "you". "Licensees" and
|
||||
"recipients" may be individuals or organizations.
|
||||
|
||||
To "modify" a work means to copy from or adapt all or part of the work
|
||||
in a fashion requiring copyright permission, other than the making of
|
||||
an exact copy. The resulting work is called a "modified version" of
|
||||
the earlier work or a work "based on" the earlier work.
|
||||
|
||||
A "covered work" means either the unmodified Program or a work based
|
||||
on the Program.
|
||||
|
||||
To "propagate" a work means to do anything with it that, without
|
||||
permission, would make you directly or secondarily liable for
|
||||
infringement under applicable copyright law, except executing it on a
|
||||
computer or modifying a private copy. Propagation includes copying,
|
||||
distribution (with or without modification), making available to the
|
||||
public, and in some countries other activities as well.
|
||||
|
||||
To "convey" a work means any kind of propagation that enables other
|
||||
parties to make or receive copies. Mere interaction with a user
|
||||
through a computer network, with no transfer of a copy, is not
|
||||
conveying.
|
||||
|
||||
An interactive user interface displays "Appropriate Legal Notices" to
|
||||
the extent that it includes a convenient and prominently visible
|
||||
feature that (1) displays an appropriate copyright notice, and (2)
|
||||
tells the user that there is no warranty for the work (except to the
|
||||
extent that warranties are provided), that licensees may convey the
|
||||
work under this License, and how to view a copy of this License. If
|
||||
the interface presents a list of user commands or options, such as a
|
||||
menu, a prominent item in the list meets this criterion.
|
||||
|
||||
### 1. Source Code.
|
||||
|
||||
The "source code" for a work means the preferred form of the work for
|
||||
making modifications to it. "Object code" means any non-source form of
|
||||
a work.
|
||||
|
||||
A "Standard Interface" means an interface that either is an official
|
||||
standard defined by a recognized standards body, or, in the case of
|
||||
interfaces specified for a particular programming language, one that
|
||||
is widely used among developers working in that language.
|
||||
|
||||
The "System Libraries" of an executable work include anything, other
|
||||
than the work as a whole, that (a) is included in the normal form of
|
||||
packaging a Major Component, but which is not part of that Major
|
||||
Component, and (b) serves only to enable use of the work with that
|
||||
Major Component, or to implement a Standard Interface for which an
|
||||
implementation is available to the public in source code form. A
|
||||
"Major Component", in this context, means a major essential component
|
||||
(kernel, window system, and so on) of the specific operating system
|
||||
(if any) on which the executable work runs, or a compiler used to
|
||||
produce the work, or an object code interpreter used to run it.
|
||||
|
||||
The "Corresponding Source" for a work in object code form means all
|
||||
the source code needed to generate, install, and (for an executable
|
||||
work) run the object code and to modify the work, including scripts to
|
||||
control those activities. However, it does not include the work's
|
||||
System Libraries, or general-purpose tools or generally available free
|
||||
programs which are used unmodified in performing those activities but
|
||||
which are not part of the work. For example, Corresponding Source
|
||||
includes interface definition files associated with source files for
|
||||
the work, and the source code for shared libraries and dynamically
|
||||
linked subprograms that the work is specifically designed to require,
|
||||
such as by intimate data communication or control flow between those
|
||||
subprograms and other parts of the work.
|
||||
|
||||
The Corresponding Source need not include anything that users can
|
||||
regenerate automatically from other parts of the Corresponding Source.
|
||||
|
||||
The Corresponding Source for a work in source code form is that same
|
||||
work.
|
||||
|
||||
### 2. Basic Permissions.
|
||||
|
||||
All rights granted under this License are granted for the term of
|
||||
copyright on the Program, and are irrevocable provided the stated
|
||||
conditions are met. This License explicitly affirms your unlimited
|
||||
permission to run the unmodified Program. The output from running a
|
||||
covered work is covered by this License only if the output, given its
|
||||
content, constitutes a covered work. This License acknowledges your
|
||||
rights of fair use or other equivalent, as provided by copyright law.
|
||||
|
||||
You may make, run and propagate covered works that you do not convey,
|
||||
without conditions so long as your license otherwise remains in force.
|
||||
You may convey covered works to others for the sole purpose of having
|
||||
them make modifications exclusively for you, or provide you with
|
||||
facilities for running those works, provided that you comply with the
|
||||
terms of this License in conveying all material for which you do not
|
||||
control copyright. Those thus making or running the covered works for
|
||||
you must do so exclusively on your behalf, under your direction and
|
||||
control, on terms that prohibit them from making any copies of your
|
||||
copyrighted material outside their relationship with you.
|
||||
|
||||
Conveying under any other circumstances is permitted solely under the
|
||||
conditions stated below. Sublicensing is not allowed; section 10 makes
|
||||
it unnecessary.
|
||||
|
||||
### 3. Protecting Users' Legal Rights From Anti-Circumvention Law.
|
||||
|
||||
No covered work shall be deemed part of an effective technological
|
||||
measure under any applicable law fulfilling obligations under article
|
||||
11 of the WIPO copyright treaty adopted on 20 December 1996, or
|
||||
similar laws prohibiting or restricting circumvention of such
|
||||
measures.
|
||||
|
||||
When you convey a covered work, you waive any legal power to forbid
|
||||
circumvention of technological measures to the extent such
|
||||
circumvention is effected by exercising rights under this License with
|
||||
respect to the covered work, and you disclaim any intention to limit
|
||||
operation or modification of the work as a means of enforcing, against
|
||||
the work's users, your or third parties' legal rights to forbid
|
||||
circumvention of technological measures.
|
||||
|
||||
### 4. Conveying Verbatim Copies.
|
||||
|
||||
You may convey verbatim copies of the Program's source code as you
|
||||
receive it, in any medium, provided that you conspicuously and
|
||||
appropriately publish on each copy an appropriate copyright notice;
|
||||
keep intact all notices stating that this License and any
|
||||
non-permissive terms added in accord with section 7 apply to the code;
|
||||
keep intact all notices of the absence of any warranty; and give all
|
||||
recipients a copy of this License along with the Program.
|
||||
|
||||
You may charge any price or no price for each copy that you convey,
|
||||
and you may offer support or warranty protection for a fee.
|
||||
|
||||
### 5. Conveying Modified Source Versions.
|
||||
|
||||
You may convey a work based on the Program, or the modifications to
|
||||
produce it from the Program, in the form of source code under the
|
||||
terms of section 4, provided that you also meet all of these
|
||||
conditions:
|
||||
|
||||
- a) The work must carry prominent notices stating that you modified
|
||||
it, and giving a relevant date.
|
||||
- b) The work must carry prominent notices stating that it is
|
||||
released under this License and any conditions added under
|
||||
section 7. This requirement modifies the requirement in section 4
|
||||
to "keep intact all notices".
|
||||
- c) You must license the entire work, as a whole, under this
|
||||
License to anyone who comes into possession of a copy. This
|
||||
License will therefore apply, along with any applicable section 7
|
||||
additional terms, to the whole of the work, and all its parts,
|
||||
regardless of how they are packaged. This License gives no
|
||||
permission to license the work in any other way, but it does not
|
||||
invalidate such permission if you have separately received it.
|
||||
- d) If the work has interactive user interfaces, each must display
|
||||
Appropriate Legal Notices; however, if the Program has interactive
|
||||
interfaces that do not display Appropriate Legal Notices, your
|
||||
work need not make them do so.
|
||||
|
||||
A compilation of a covered work with other separate and independent
|
||||
works, which are not by their nature extensions of the covered work,
|
||||
and which are not combined with it such as to form a larger program,
|
||||
in or on a volume of a storage or distribution medium, is called an
|
||||
"aggregate" if the compilation and its resulting copyright are not
|
||||
used to limit the access or legal rights of the compilation's users
|
||||
beyond what the individual works permit. Inclusion of a covered work
|
||||
in an aggregate does not cause this License to apply to the other
|
||||
parts of the aggregate.
|
||||
|
||||
### 6. Conveying Non-Source Forms.
|
||||
|
||||
You may convey a covered work in object code form under the terms of
|
||||
sections 4 and 5, provided that you also convey the machine-readable
|
||||
Corresponding Source under the terms of this License, in one of these
|
||||
ways:
|
||||
|
||||
- a) Convey the object code in, or embodied in, a physical product
|
||||
(including a physical distribution medium), accompanied by the
|
||||
Corresponding Source fixed on a durable physical medium
|
||||
customarily used for software interchange.
|
||||
- b) Convey the object code in, or embodied in, a physical product
|
||||
(including a physical distribution medium), accompanied by a
|
||||
written offer, valid for at least three years and valid for as
|
||||
long as you offer spare parts or customer support for that product
|
||||
model, to give anyone who possesses the object code either (1) a
|
||||
copy of the Corresponding Source for all the software in the
|
||||
product that is covered by this License, on a durable physical
|
||||
medium customarily used for software interchange, for a price no
|
||||
more than your reasonable cost of physically performing this
|
||||
conveying of source, or (2) access to copy the Corresponding
|
||||
Source from a network server at no charge.
|
||||
- c) Convey individual copies of the object code with a copy of the
|
||||
written offer to provide the Corresponding Source. This
|
||||
alternative is allowed only occasionally and noncommercially, and
|
||||
only if you received the object code with such an offer, in accord
|
||||
with subsection 6b.
|
||||
- d) Convey the object code by offering access from a designated
|
||||
place (gratis or for a charge), and offer equivalent access to the
|
||||
Corresponding Source in the same way through the same place at no
|
||||
further charge. You need not require recipients to copy the
|
||||
Corresponding Source along with the object code. If the place to
|
||||
copy the object code is a network server, the Corresponding Source
|
||||
may be on a different server (operated by you or a third party)
|
||||
that supports equivalent copying facilities, provided you maintain
|
||||
clear directions next to the object code saying where to find the
|
||||
Corresponding Source. Regardless of what server hosts the
|
||||
Corresponding Source, you remain obligated to ensure that it is
|
||||
available for as long as needed to satisfy these requirements.
|
||||
- e) Convey the object code using peer-to-peer transmission,
|
||||
provided you inform other peers where the object code and
|
||||
Corresponding Source of the work are being offered to the general
|
||||
public at no charge under subsection 6d.
|
||||
|
||||
A separable portion of the object code, whose source code is excluded
|
||||
from the Corresponding Source as a System Library, need not be
|
||||
included in conveying the object code work.
|
||||
|
||||
A "User Product" is either (1) a "consumer product", which means any
|
||||
tangible personal property which is normally used for personal,
|
||||
family, or household purposes, or (2) anything designed or sold for
|
||||
incorporation into a dwelling. In determining whether a product is a
|
||||
consumer product, doubtful cases shall be resolved in favor of
|
||||
coverage. For a particular product received by a particular user,
|
||||
"normally used" refers to a typical or common use of that class of
|
||||
product, regardless of the status of the particular user or of the way
|
||||
in which the particular user actually uses, or expects or is expected
|
||||
to use, the product. A product is a consumer product regardless of
|
||||
whether the product has substantial commercial, industrial or
|
||||
non-consumer uses, unless such uses represent the only significant
|
||||
mode of use of the product.
|
||||
|
||||
"Installation Information" for a User Product means any methods,
|
||||
procedures, authorization keys, or other information required to
|
||||
install and execute modified versions of a covered work in that User
|
||||
Product from a modified version of its Corresponding Source. The
|
||||
information must suffice to ensure that the continued functioning of
|
||||
the modified object code is in no case prevented or interfered with
|
||||
solely because modification has been made.
|
||||
|
||||
If you convey an object code work under this section in, or with, or
|
||||
specifically for use in, a User Product, and the conveying occurs as
|
||||
part of a transaction in which the right of possession and use of the
|
||||
User Product is transferred to the recipient in perpetuity or for a
|
||||
fixed term (regardless of how the transaction is characterized), the
|
||||
Corresponding Source conveyed under this section must be accompanied
|
||||
by the Installation Information. But this requirement does not apply
|
||||
if neither you nor any third party retains the ability to install
|
||||
modified object code on the User Product (for example, the work has
|
||||
been installed in ROM).
|
||||
|
||||
The requirement to provide Installation Information does not include a
|
||||
requirement to continue to provide support service, warranty, or
|
||||
updates for a work that has been modified or installed by the
|
||||
recipient, or for the User Product in which it has been modified or
|
||||
installed. Access to a network may be denied when the modification
|
||||
itself materially and adversely affects the operation of the network
|
||||
or violates the rules and protocols for communication across the
|
||||
network.
|
||||
|
||||
Corresponding Source conveyed, and Installation Information provided,
|
||||
in accord with this section must be in a format that is publicly
|
||||
documented (and with an implementation available to the public in
|
||||
source code form), and must require no special password or key for
|
||||
unpacking, reading or copying.
|
||||
|
||||
### 7. Additional Terms.
|
||||
|
||||
"Additional permissions" are terms that supplement the terms of this
|
||||
License by making exceptions from one or more of its conditions.
|
||||
Additional permissions that are applicable to the entire Program shall
|
||||
be treated as though they were included in this License, to the extent
|
||||
that they are valid under applicable law. If additional permissions
|
||||
apply only to part of the Program, that part may be used separately
|
||||
under those permissions, but the entire Program remains governed by
|
||||
this License without regard to the additional permissions.
|
||||
|
||||
When you convey a copy of a covered work, you may at your option
|
||||
remove any additional permissions from that copy, or from any part of
|
||||
it. (Additional permissions may be written to require their own
|
||||
removal in certain cases when you modify the work.) You may place
|
||||
additional permissions on material, added by you to a covered work,
|
||||
for which you have or can give appropriate copyright permission.
|
||||
|
||||
Notwithstanding any other provision of this License, for material you
|
||||
add to a covered work, you may (if authorized by the copyright holders
|
||||
of that material) supplement the terms of this License with terms:
|
||||
|
||||
- a) Disclaiming warranty or limiting liability differently from the
|
||||
terms of sections 15 and 16 of this License; or
|
||||
- b) Requiring preservation of specified reasonable legal notices or
|
||||
author attributions in that material or in the Appropriate Legal
|
||||
Notices displayed by works containing it; or
|
||||
- c) Prohibiting misrepresentation of the origin of that material,
|
||||
or requiring that modified versions of such material be marked in
|
||||
reasonable ways as different from the original version; or
|
||||
- d) Limiting the use for publicity purposes of names of licensors
|
||||
or authors of the material; or
|
||||
- e) Declining to grant rights under trademark law for use of some
|
||||
trade names, trademarks, or service marks; or
|
||||
- f) Requiring indemnification of licensors and authors of that
|
||||
material by anyone who conveys the material (or modified versions
|
||||
of it) with contractual assumptions of liability to the recipient,
|
||||
for any liability that these contractual assumptions directly
|
||||
impose on those licensors and authors.
|
||||
|
||||
All other non-permissive additional terms are considered "further
|
||||
restrictions" within the meaning of section 10. If the Program as you
|
||||
received it, or any part of it, contains a notice stating that it is
|
||||
governed by this License along with a term that is a further
|
||||
restriction, you may remove that term. If a license document contains
|
||||
a further restriction but permits relicensing or conveying under this
|
||||
License, you may add to a covered work material governed by the terms
|
||||
of that license document, provided that the further restriction does
|
||||
not survive such relicensing or conveying.
|
||||
|
||||
If you add terms to a covered work in accord with this section, you
|
||||
must place, in the relevant source files, a statement of the
|
||||
additional terms that apply to those files, or a notice indicating
|
||||
where to find the applicable terms.
|
||||
|
||||
Additional terms, permissive or non-permissive, may be stated in the
|
||||
form of a separately written license, or stated as exceptions; the
|
||||
above requirements apply either way.
|
||||
|
||||
### 8. Termination.
|
||||
|
||||
You may not propagate or modify a covered work except as expressly
|
||||
provided under this License. Any attempt otherwise to propagate or
|
||||
modify it is void, and will automatically terminate your rights under
|
||||
this License (including any patent licenses granted under the third
|
||||
paragraph of section 11).
|
||||
|
||||
However, if you cease all violation of this License, then your license
|
||||
from a particular copyright holder is reinstated (a) provisionally,
|
||||
unless and until the copyright holder explicitly and finally
|
||||
terminates your license, and (b) permanently, if the copyright holder
|
||||
fails to notify you of the violation by some reasonable means prior to
|
||||
60 days after the cessation.
|
||||
|
||||
Moreover, your license from a particular copyright holder is
|
||||
reinstated permanently if the copyright holder notifies you of the
|
||||
violation by some reasonable means, this is the first time you have
|
||||
received notice of violation of this License (for any work) from that
|
||||
copyright holder, and you cure the violation prior to 30 days after
|
||||
your receipt of the notice.
|
||||
|
||||
Termination of your rights under this section does not terminate the
|
||||
licenses of parties who have received copies or rights from you under
|
||||
this License. If your rights have been terminated and not permanently
|
||||
reinstated, you do not qualify to receive new licenses for the same
|
||||
material under section 10.
|
||||
|
||||
### 9. Acceptance Not Required for Having Copies.
|
||||
|
||||
You are not required to accept this License in order to receive or run
|
||||
a copy of the Program. Ancillary propagation of a covered work
|
||||
occurring solely as a consequence of using peer-to-peer transmission
|
||||
to receive a copy likewise does not require acceptance. However,
|
||||
nothing other than this License grants you permission to propagate or
|
||||
modify any covered work. These actions infringe copyright if you do
|
||||
not accept this License. Therefore, by modifying or propagating a
|
||||
covered work, you indicate your acceptance of this License to do so.
|
||||
|
||||
### 10. Automatic Licensing of Downstream Recipients.
|
||||
|
||||
Each time you convey a covered work, the recipient automatically
|
||||
receives a license from the original licensors, to run, modify and
|
||||
propagate that work, subject to this License. You are not responsible
|
||||
for enforcing compliance by third parties with this License.
|
||||
|
||||
An "entity transaction" is a transaction transferring control of an
|
||||
organization, or substantially all assets of one, or subdividing an
|
||||
organization, or merging organizations. If propagation of a covered
|
||||
work results from an entity transaction, each party to that
|
||||
transaction who receives a copy of the work also receives whatever
|
||||
licenses to the work the party's predecessor in interest had or could
|
||||
give under the previous paragraph, plus a right to possession of the
|
||||
Corresponding Source of the work from the predecessor in interest, if
|
||||
the predecessor has it or can get it with reasonable efforts.
|
||||
|
||||
You may not impose any further restrictions on the exercise of the
|
||||
rights granted or affirmed under this License. For example, you may
|
||||
not impose a license fee, royalty, or other charge for exercise of
|
||||
rights granted under this License, and you may not initiate litigation
|
||||
(including a cross-claim or counterclaim in a lawsuit) alleging that
|
||||
any patent claim is infringed by making, using, selling, offering for
|
||||
sale, or importing the Program or any portion of it.
|
||||
|
||||
### 11. Patents.
|
||||
|
||||
A "contributor" is a copyright holder who authorizes use under this
|
||||
License of the Program or a work on which the Program is based. The
|
||||
work thus licensed is called the contributor's "contributor version".
|
||||
|
||||
A contributor's "essential patent claims" are all patent claims owned
|
||||
or controlled by the contributor, whether already acquired or
|
||||
hereafter acquired, that would be infringed by some manner, permitted
|
||||
by this License, of making, using, or selling its contributor version,
|
||||
but do not include claims that would be infringed only as a
|
||||
consequence of further modification of the contributor version. For
|
||||
purposes of this definition, "control" includes the right to grant
|
||||
patent sublicenses in a manner consistent with the requirements of
|
||||
this License.
|
||||
|
||||
Each contributor grants you a non-exclusive, worldwide, royalty-free
|
||||
patent license under the contributor's essential patent claims, to
|
||||
make, use, sell, offer for sale, import and otherwise run, modify and
|
||||
propagate the contents of its contributor version.
|
||||
|
||||
In the following three paragraphs, a "patent license" is any express
|
||||
agreement or commitment, however denominated, not to enforce a patent
|
||||
(such as an express permission to practice a patent or covenant not to
|
||||
sue for patent infringement). To "grant" such a patent license to a
|
||||
party means to make such an agreement or commitment not to enforce a
|
||||
patent against the party.
|
||||
|
||||
If you convey a covered work, knowingly relying on a patent license,
|
||||
and the Corresponding Source of the work is not available for anyone
|
||||
to copy, free of charge and under the terms of this License, through a
|
||||
publicly available network server or other readily accessible means,
|
||||
then you must either (1) cause the Corresponding Source to be so
|
||||
available, or (2) arrange to deprive yourself of the benefit of the
|
||||
patent license for this particular work, or (3) arrange, in a manner
|
||||
consistent with the requirements of this License, to extend the patent
|
||||
license to downstream recipients. "Knowingly relying" means you have
|
||||
actual knowledge that, but for the patent license, your conveying the
|
||||
covered work in a country, or your recipient's use of the covered work
|
||||
in a country, would infringe one or more identifiable patents in that
|
||||
country that you have reason to believe are valid.
|
||||
|
||||
If, pursuant to or in connection with a single transaction or
|
||||
arrangement, you convey, or propagate by procuring conveyance of, a
|
||||
covered work, and grant a patent license to some of the parties
|
||||
receiving the covered work authorizing them to use, propagate, modify
|
||||
or convey a specific copy of the covered work, then the patent license
|
||||
you grant is automatically extended to all recipients of the covered
|
||||
work and works based on it.
|
||||
|
||||
A patent license is "discriminatory" if it does not include within the
|
||||
scope of its coverage, prohibits the exercise of, or is conditioned on
|
||||
the non-exercise of one or more of the rights that are specifically
|
||||
granted under this License. You may not convey a covered work if you
|
||||
are a party to an arrangement with a third party that is in the
|
||||
business of distributing software, under which you make payment to the
|
||||
third party based on the extent of your activity of conveying the
|
||||
work, and under which the third party grants, to any of the parties
|
||||
who would receive the covered work from you, a discriminatory patent
|
||||
license (a) in connection with copies of the covered work conveyed by
|
||||
you (or copies made from those copies), or (b) primarily for and in
|
||||
connection with specific products or compilations that contain the
|
||||
covered work, unless you entered into that arrangement, or that patent
|
||||
license was granted, prior to 28 March 2007.
|
||||
|
||||
Nothing in this License shall be construed as excluding or limiting
|
||||
any implied license or other defenses to infringement that may
|
||||
otherwise be available to you under applicable patent law.
|
||||
|
||||
### 12. No Surrender of Others' Freedom.
|
||||
|
||||
If conditions are imposed on you (whether by court order, agreement or
|
||||
otherwise) that contradict the conditions of this License, they do not
|
||||
excuse you from the conditions of this License. If you cannot convey a
|
||||
covered work so as to satisfy simultaneously your obligations under
|
||||
this License and any other pertinent obligations, then as a
|
||||
consequence you may not convey it at all. For example, if you agree to
|
||||
terms that obligate you to collect a royalty for further conveying
|
||||
from those to whom you convey the Program, the only way you could
|
||||
satisfy both those terms and this License would be to refrain entirely
|
||||
from conveying the Program.
|
||||
|
||||
### 13. Use with the GNU Affero General Public License.
|
||||
|
||||
Notwithstanding any other provision of this License, you have
|
||||
permission to link or combine any covered work with a work licensed
|
||||
under version 3 of the GNU Affero General Public License into a single
|
||||
combined work, and to convey the resulting work. The terms of this
|
||||
License will continue to apply to the part which is the covered work,
|
||||
but the special requirements of the GNU Affero General Public License,
|
||||
section 13, concerning interaction through a network will apply to the
|
||||
combination as such.
|
||||
|
||||
### 14. Revised Versions of this License.
|
||||
|
||||
The Free Software Foundation may publish revised and/or new versions
|
||||
of the GNU General Public License from time to time. Such new versions
|
||||
will be similar in spirit to the present version, but may differ in
|
||||
detail to address new problems or concerns.
|
||||
|
||||
Each version is given a distinguishing version number. If the Program
|
||||
specifies that a certain numbered version of the GNU General Public
|
||||
License "or any later version" applies to it, you have the option of
|
||||
following the terms and conditions either of that numbered version or
|
||||
of any later version published by the Free Software Foundation. If the
|
||||
Program does not specify a version number of the GNU General Public
|
||||
License, you may choose any version ever published by the Free
|
||||
Software Foundation.
|
||||
|
||||
If the Program specifies that a proxy can decide which future versions
|
||||
of the GNU General Public License can be used, that proxy's public
|
||||
statement of acceptance of a version permanently authorizes you to
|
||||
choose that version for the Program.
|
||||
|
||||
Later license versions may give you additional or different
|
||||
permissions. However, no additional obligations are imposed on any
|
||||
author or copyright holder as a result of your choosing to follow a
|
||||
later version.
|
||||
|
||||
### 15. Disclaimer of Warranty.
|
||||
|
||||
THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
|
||||
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
|
||||
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT
|
||||
WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT
|
||||
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
||||
A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND
|
||||
PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE
|
||||
DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR
|
||||
CORRECTION.
|
||||
|
||||
### 16. Limitation of Liability.
|
||||
|
||||
IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
|
||||
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR
|
||||
CONVEYS THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES,
|
||||
INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES
|
||||
ARISING OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT
|
||||
NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR
|
||||
LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM
|
||||
TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER
|
||||
PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
|
||||
|
||||
### 17. Interpretation of Sections 15 and 16.
|
||||
|
||||
If the disclaimer of warranty and limitation of liability provided
|
||||
above cannot be given local legal effect according to their terms,
|
||||
reviewing courts shall apply local law that most closely approximates
|
||||
an absolute waiver of all civil liability in connection with the
|
||||
Program, unless a warranty or assumption of liability accompanies a
|
||||
copy of the Program in return for a fee.
|
||||
|
||||
END OF TERMS AND CONDITIONS
|
||||
|
||||
## How to Apply These Terms to Your New Programs
|
||||
|
||||
If you develop a new program, and you want it to be of the greatest
|
||||
possible use to the public, the best way to achieve this is to make it
|
||||
free software which everyone can redistribute and change under these
|
||||
terms.
|
||||
|
||||
To do so, attach the following notices to the program. It is safest to
|
||||
attach them to the start of each source file to most effectively state
|
||||
the exclusion of warranty; and each file should have at least the
|
||||
"copyright" line and a pointer to where the full notice is found.
|
||||
|
||||
<one line to give the program's name and a brief idea of what it does.>
|
||||
Copyright (C) <year> <name of author>
|
||||
|
||||
This program is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with this program. If not, see <https://www.gnu.org/licenses/>.
|
||||
|
||||
Also add information on how to contact you by electronic and paper
|
||||
mail.
|
||||
|
||||
If the program does terminal interaction, make it output a short
|
||||
notice like this when it starts in an interactive mode:
|
||||
|
||||
<program> Copyright (C) <year> <name of author>
|
||||
This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
|
||||
This is free software, and you are welcome to redistribute it
|
||||
under certain conditions; type `show c' for details.
|
||||
|
||||
The hypothetical commands \`show w' and \`show c' should show the
|
||||
appropriate parts of the General Public License. Of course, your
|
||||
program's commands might be different; for a GUI interface, you would
|
||||
use an "about box".
|
||||
|
||||
You should also get your employer (if you work as a programmer) or
|
||||
school, if any, to sign a "copyright disclaimer" for the program, if
|
||||
necessary. For more information on this, and how to apply and follow
|
||||
the GNU GPL, see <https://www.gnu.org/licenses/>.
|
||||
|
||||
The GNU General Public License does not permit incorporating your
|
||||
program into proprietary programs. If your program is a subroutine
|
||||
library, you may consider it more useful to permit linking proprietary
|
||||
applications with the library. If this is what you want to do, use the
|
||||
GNU Lesser General Public License instead of this License. But first,
|
||||
please read <https://www.gnu.org/licenses/why-not-lgpl.html>.
|
47
README.md
47
README.md
@ -3,26 +3,49 @@
|
||||
## Example
|
||||
|
||||
```py
|
||||
from arcaea_offline_ocr.device.v2.rois import DeviceV2AutoRois
|
||||
from arcaea_offline_ocr.device.v2.ocr import DeviceV2Ocr
|
||||
from arcaea_offline_ocr.sift_db import SIFTDatabase
|
||||
from arcaea_offline_ocr.utils import imread_unicode
|
||||
import cv2
|
||||
from arcaea_offline_ocr.device.ocr import DeviceOcr
|
||||
from arcaea_offline_ocr.device.rois.definition import DeviceRoisAutoT2
|
||||
from arcaea_offline_ocr.device.rois.extractor import DeviceRoisExtractor
|
||||
from arcaea_offline_ocr.device.rois.masker import DeviceRoisMaskerAutoT2
|
||||
from arcaea_offline_ocr.phash_db import ImagePhashDatabase
|
||||
|
||||
knn_model = cv2.ml.KNearest_load(r'/path/to/knn/model')
|
||||
sift_db = SIFTDatabase(r'/path/to/sift/database.db')
|
||||
img_path = "/path/to/opencv/supported/image/formats.jpg"
|
||||
img = cv2.imread(img_path, cv2.IMREAD_COLOR)
|
||||
|
||||
rois = DeviceV2AutoRois(imread_unicode(r'/path/to/your/screenshot.jpg')) # any format that opencv-python supports
|
||||
ocr = DeviceV2Ocr(knn_model, sift_db)
|
||||
result = ocr.ocr(rois)
|
||||
print(result)
|
||||
rois = DeviceRoisAutoT2(img.shape[1], img.shape[0])
|
||||
extractor = DeviceRoisExtractor(img, rois)
|
||||
masker = DeviceRoisMaskerAutoT2()
|
||||
|
||||
knn_model = cv2.ml.KNearest.load("/path/to/trained/knn/model.dat")
|
||||
phash_db = ImagePhashDatabase("/path/to/image/phash/database.db")
|
||||
|
||||
ocr = DeviceOcr(extractor, masker, knn_model, phash_db)
|
||||
print(ocr.ocr())
|
||||
```
|
||||
|
||||
```sh
|
||||
$ python example.py
|
||||
DeviceOcrResult(rating_class=2, pure=1371, far=62, lost=34, score=9558078, max_recall=330, song_id='abstrusedilemma', title=None, clear_type=None)
|
||||
DeviceOcrResult(rating_class=2, pure=1135, far=11, lost=0, score=9953016, max_recall=1146, song_id='ringedgenesis', song_id_possibility=0.953125, clear_status=2, partner_id='45', partner_id_possibility=0.8046875)
|
||||
```
|
||||
|
||||
## License
|
||||
|
||||
This file is part of arcaea-offline-ocr, as called "This program" below.
|
||||
|
||||
This program is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with this program. If not, see <https://www.gnu.org/licenses/>.
|
||||
|
||||
## Credits
|
||||
|
||||
[283375/image-sift-database](https://github.com/283375/image-sift-database)
|
||||
[283375/image-phash-database](https://github.com/283375/image-phash-database)
|
||||
|
@ -4,20 +4,20 @@ build-backend = "setuptools.build_meta"
|
||||
|
||||
[project]
|
||||
name = "arcaea-offline-ocr"
|
||||
version = "0.1.0"
|
||||
version = "0.0.99"
|
||||
authors = [{ name = "283375", email = "log_283375@163.com" }]
|
||||
description = "Extract your Arcaea play result from screenshot."
|
||||
readme = "README.md"
|
||||
requires-python = ">=3.8"
|
||||
dependencies = ["attrs==23.1.0", "numpy==1.25.2", "opencv-python==4.8.0.76"]
|
||||
dependencies = ["attrs==23.1.0", "numpy==1.26.1", "opencv-python==4.8.1.78"]
|
||||
classifiers = [
|
||||
"Development Status :: 3 - Alpha",
|
||||
"Programming Language :: Python :: 3",
|
||||
]
|
||||
|
||||
[project.urls]
|
||||
"Homepage" = "https://github.com/283375/arcaea-offline-ocr"
|
||||
"Bug Tracker" = "https://github.com/283375/arcaea-offline-ocr/issues"
|
||||
"Homepage" = "https://github.com/ArcaeaOffline/core-ocr"
|
||||
"Bug Tracker" = "https://github.com/ArcaeaOffline/core-ocr/issues"
|
||||
|
||||
[tool.isort]
|
||||
profile = "black"
|
||||
@ -25,3 +25,14 @@ src_paths = ["src/arcaea_offline_ocr"]
|
||||
|
||||
[tool.pyright]
|
||||
ignore = ["**/__debug*.*"]
|
||||
|
||||
[tool.pylint.main]
|
||||
# extension-pkg-allow-list = ["cv2"]
|
||||
generated-members = ["cv2.*"]
|
||||
|
||||
[tool.pylint.logging]
|
||||
disable = [
|
||||
"missing-module-docstring",
|
||||
"missing-class-docstring",
|
||||
"missing-function-docstring"
|
||||
]
|
||||
|
@ -1,3 +1,3 @@
|
||||
attrs==23.1.0
|
||||
numpy==1.25.2
|
||||
opencv-python==4.8.0.76
|
||||
numpy==1.26.1
|
||||
opencv-python==4.8.1.78
|
||||
|
@ -1,5 +1,4 @@
|
||||
from .crop import *
|
||||
from .device import *
|
||||
from .mask import *
|
||||
from .ocr import *
|
||||
from .utils import *
|
||||
|
@ -5,9 +5,14 @@ import cv2
|
||||
import numpy as np
|
||||
|
||||
from ....crop import crop_xywh
|
||||
from ....ocr import FixRects, ocr_digits_by_contour_knn, preprocess_hog
|
||||
from ....sift_db import SIFTDatabase
|
||||
from ....types import Mat, cv2_ml_KNearest
|
||||
from ....ocr import (
|
||||
FixRects,
|
||||
ocr_digits_by_contour_knn,
|
||||
preprocess_hog,
|
||||
resize_fill_square,
|
||||
)
|
||||
from ....phash_db import ImagePhashDatabase
|
||||
from ....types import Mat
|
||||
from ....utils import construct_int_xywh_rect
|
||||
from ...shared import B30OcrResultItem
|
||||
from .colors import *
|
||||
@ -17,14 +22,14 @@ from .rois import ChieriBotV4Rois
|
||||
class ChieriBotV4Ocr:
|
||||
def __init__(
|
||||
self,
|
||||
score_knn: cv2_ml_KNearest,
|
||||
pfl_knn: cv2_ml_KNearest,
|
||||
sift_db: SIFTDatabase,
|
||||
score_knn: cv2.ml.KNearest,
|
||||
pfl_knn: cv2.ml.KNearest,
|
||||
phash_db: ImagePhashDatabase,
|
||||
factor: Optional[float] = 1.0,
|
||||
):
|
||||
self.__score_knn = score_knn
|
||||
self.__pfl_knn = pfl_knn
|
||||
self.__sift_db = sift_db
|
||||
self.__phash_db = phash_db
|
||||
self.__rois = ChieriBotV4Rois(factor)
|
||||
|
||||
@property
|
||||
@ -32,7 +37,7 @@ class ChieriBotV4Ocr:
|
||||
return self.__score_knn
|
||||
|
||||
@score_knn.setter
|
||||
def score_knn(self, knn_digits_model: Mat):
|
||||
def score_knn(self, knn_digits_model: cv2.ml.KNearest):
|
||||
self.__score_knn = knn_digits_model
|
||||
|
||||
@property
|
||||
@ -40,16 +45,16 @@ class ChieriBotV4Ocr:
|
||||
return self.__pfl_knn
|
||||
|
||||
@pfl_knn.setter
|
||||
def pfl_knn(self, knn_digits_model: Mat):
|
||||
def pfl_knn(self, knn_digits_model: cv2.ml.KNearest):
|
||||
self.__pfl_knn = knn_digits_model
|
||||
|
||||
@property
|
||||
def sift_db(self):
|
||||
return self.__sift_db
|
||||
def phash_db(self):
|
||||
return self.__phash_db
|
||||
|
||||
@sift_db.setter
|
||||
def sift_db(self, sift_db: SIFTDatabase):
|
||||
self.__sift_db = sift_db
|
||||
@phash_db.setter
|
||||
def phash_db(self, phash_db: ImagePhashDatabase):
|
||||
self.__phash_db = phash_db
|
||||
|
||||
@property
|
||||
def rois(self):
|
||||
@ -83,14 +88,6 @@ class ChieriBotV4Ocr:
|
||||
else:
|
||||
return max(enumerate(rating_class_results), key=lambda i: i[1])[0] + 1
|
||||
|
||||
# def ocr_component_title(self, component_bgr: Mat) -> str:
|
||||
# # sourcery skip: inline-immediately-returned-variable
|
||||
# title_rect = construct_int_xywh_rect(self.rois.component_rois.title_rect)
|
||||
# title_roi = crop_xywh(component_bgr, title_rect)
|
||||
# ocr_result = self.sift_db.ocr(title_roi, cls=False)
|
||||
# title = ocr_result[0][-1][1][0] if ocr_result and ocr_result[0] else ""
|
||||
# return title
|
||||
|
||||
def ocr_component_song_id(self, component_bgr: Mat):
|
||||
jacket_rect = construct_int_xywh_rect(
|
||||
self.rois.component_rois.jacket_rect, floor
|
||||
@ -98,20 +95,7 @@ class ChieriBotV4Ocr:
|
||||
jacket_roi = cv2.cvtColor(
|
||||
crop_xywh(component_bgr, jacket_rect), cv2.COLOR_BGR2GRAY
|
||||
)
|
||||
return self.sift_db.lookup_img(jacket_roi)[0]
|
||||
|
||||
# def ocr_component_score_paddle(self, component_bgr: Mat) -> int:
|
||||
# # sourcery skip: inline-immediately-returned-variable
|
||||
# score_rect = construct_int_xywh_rect(self.rois.component_rois.score_rect)
|
||||
# score_roi = cv2.cvtColor(
|
||||
# crop_xywh(component_bgr, score_rect), cv2.COLOR_BGR2GRAY
|
||||
# )
|
||||
# _, score_roi = cv2.threshold(
|
||||
# score_roi, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU
|
||||
# )
|
||||
# score_str = self.sift_db.ocr(score_roi, cls=False)[0][-1][1][0]
|
||||
# score = int(score_str.replace("'", "").replace(" ", ""))
|
||||
# return score
|
||||
return self.phash_db.lookup_jacket(jacket_roi)[0]
|
||||
|
||||
def ocr_component_score_knn(self, component_bgr: Mat) -> int:
|
||||
# sourcery skip: inline-immediately-returned-variable
|
||||
@ -221,7 +205,7 @@ class ChieriBotV4Ocr:
|
||||
digits = []
|
||||
for digit_rect in digit_rects:
|
||||
digit = crop_xywh(roi, digit_rect)
|
||||
digit = cv2.resize(digit, (20, 20))
|
||||
digit = resize_fill_square(digit, 20)
|
||||
digits.append(digit)
|
||||
samples = preprocess_hog(digits)
|
||||
|
||||
@ -232,15 +216,6 @@ class ChieriBotV4Ocr:
|
||||
except Exception:
|
||||
return (None, None, None)
|
||||
|
||||
# def ocr_component_date(self, component_bgr: Mat):
|
||||
# date_rect = construct_int_xywh_rect(self.rois.component_rois.date_rect)
|
||||
# date_roi = cv2.cvtColor(crop_xywh(component_bgr, date_rect), cv2.COLOR_BGR2GRAY)
|
||||
# _, date_roi = cv2.threshold(
|
||||
# date_roi, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU
|
||||
# )
|
||||
# date_str = self.sift_db.ocr(date_roi, cls=False)[0][-1][1][0]
|
||||
# return date_str
|
||||
|
||||
def ocr_component(self, component_bgr: Mat) -> B30OcrResultItem:
|
||||
component_blur = cv2.GaussianBlur(component_bgr, (5, 5), 0)
|
||||
rating_class = self.ocr_component_rating_class(component_blur)
|
||||
|
@ -1,5 +1,5 @@
|
||||
from datetime import datetime
|
||||
from typing import Optional, Union
|
||||
from typing import Optional
|
||||
|
||||
import attrs
|
||||
|
||||
|
@ -1,11 +1,12 @@
|
||||
from math import floor
|
||||
import math
|
||||
from typing import Tuple
|
||||
|
||||
import cv2
|
||||
import numpy as np
|
||||
|
||||
from .types import Mat
|
||||
|
||||
__all__ = ["crop_xywh", "crop_black_edges", "crop_black_edges_grayscale"]
|
||||
__all__ = ["crop_xywh", "CropBlackEdges"]
|
||||
|
||||
|
||||
def crop_xywh(mat: Mat, rect: Tuple[int, int, int, int]):
|
||||
@ -13,92 +14,53 @@ def crop_xywh(mat: Mat, rect: Tuple[int, int, int, int]):
|
||||
return mat[y : y + h, x : x + w]
|
||||
|
||||
|
||||
def is_black_edge(list_of_pixels: Mat, black_pixel: Mat, ratio: float = 0.6):
|
||||
pixels = list_of_pixels.reshape([-1, 3])
|
||||
return np.count_nonzero(np.all(pixels < black_pixel, axis=1)) > floor(
|
||||
len(pixels) * ratio
|
||||
)
|
||||
class CropBlackEdges:
|
||||
@staticmethod
|
||||
def is_black_edge(__img_gray_slice: Mat, black_pixel: int, ratio: float = 0.6):
|
||||
pixels_compared = __img_gray_slice < black_pixel
|
||||
return np.count_nonzero(pixels_compared) > math.floor(
|
||||
__img_gray_slice.size * ratio
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def get_crop_rect(cls, img_gray: Mat, black_threshold: int = 25):
|
||||
height, width = img_gray.shape[:2]
|
||||
left = 0
|
||||
right = width
|
||||
top = 0
|
||||
bottom = height
|
||||
|
||||
def crop_black_edges(img_bgr: Mat, black_threshold: int = 50):
|
||||
cropped = img_bgr.copy()
|
||||
black_pixel = np.array([black_threshold] * 3, img_bgr.dtype)
|
||||
height, width = img_bgr.shape[:2]
|
||||
left = 0
|
||||
right = width
|
||||
top = 0
|
||||
bottom = height
|
||||
for i in range(width):
|
||||
column = img_gray[:, i]
|
||||
if not cls.is_black_edge(column, black_threshold):
|
||||
break
|
||||
left += 1
|
||||
|
||||
for i in range(width):
|
||||
column = cropped[:, i]
|
||||
if not is_black_edge(column, black_pixel):
|
||||
break
|
||||
left += 1
|
||||
for i in sorted(range(width), reverse=True):
|
||||
column = img_gray[:, i]
|
||||
if i <= left + 1 or not cls.is_black_edge(column, black_threshold):
|
||||
break
|
||||
right -= 1
|
||||
|
||||
for i in sorted(range(width), reverse=True):
|
||||
column = cropped[:, i]
|
||||
if i <= left + 1 or not is_black_edge(column, black_pixel):
|
||||
break
|
||||
right -= 1
|
||||
for i in range(height):
|
||||
row = img_gray[i]
|
||||
if not cls.is_black_edge(row, black_threshold):
|
||||
break
|
||||
top += 1
|
||||
|
||||
for i in range(height):
|
||||
row = cropped[i]
|
||||
if not is_black_edge(row, black_pixel):
|
||||
break
|
||||
top += 1
|
||||
for i in sorted(range(height), reverse=True):
|
||||
row = img_gray[i]
|
||||
if i <= top + 1 or not cls.is_black_edge(row, black_threshold):
|
||||
break
|
||||
bottom -= 1
|
||||
|
||||
for i in sorted(range(height), reverse=True):
|
||||
row = cropped[i]
|
||||
if i <= top + 1 or not is_black_edge(row, black_pixel):
|
||||
break
|
||||
bottom -= 1
|
||||
assert right > left, "cropped width < 0"
|
||||
assert bottom > top, "cropped height < 0"
|
||||
return (left, top, right - left, bottom - top)
|
||||
|
||||
return cropped[top:bottom, left:right]
|
||||
|
||||
|
||||
def is_black_edge_grayscale(
|
||||
gray_value_list: np.ndarray, black_threshold: int = 50, ratio: float = 0.6
|
||||
) -> bool:
|
||||
return (
|
||||
np.count_nonzero(gray_value_list < black_threshold)
|
||||
> len(gray_value_list) * ratio
|
||||
)
|
||||
|
||||
|
||||
def crop_black_edges_grayscale(
|
||||
img_gray: Mat, black_threshold: int = 50
|
||||
) -> Tuple[int, int, int, int]:
|
||||
"""Returns cropped rect"""
|
||||
height, width = img_gray.shape[:2]
|
||||
left = 0
|
||||
right = width
|
||||
top = 0
|
||||
bottom = height
|
||||
|
||||
for i in range(width):
|
||||
column = img_gray[:, i]
|
||||
if not is_black_edge_grayscale(column, black_threshold):
|
||||
break
|
||||
left += 1
|
||||
|
||||
for i in sorted(range(width), reverse=True):
|
||||
column = img_gray[:, i]
|
||||
if i <= left + 1 or not is_black_edge_grayscale(column, black_threshold):
|
||||
break
|
||||
right -= 1
|
||||
|
||||
for i in range(height):
|
||||
row = img_gray[i]
|
||||
if not is_black_edge_grayscale(row, black_threshold):
|
||||
break
|
||||
top += 1
|
||||
|
||||
for i in sorted(range(height), reverse=True):
|
||||
row = img_gray[i]
|
||||
if i <= top + 1 or not is_black_edge_grayscale(row, black_threshold):
|
||||
break
|
||||
bottom -= 1
|
||||
|
||||
assert right > left, "cropped width > 0"
|
||||
assert bottom > top, "cropped height > 0"
|
||||
return (left, top, right - left, bottom - top)
|
||||
@classmethod
|
||||
def crop(
|
||||
cls, img: Mat, convert_flag: cv2.COLOR_BGR2GRAY, black_threshold: int = 25
|
||||
) -> Mat:
|
||||
rect = cls.get_crop_rect(cv2.cvtColor(img, convert_flag), black_threshold)
|
||||
return crop_xywh(img, rect)
|
||||
|
@ -0,0 +1,2 @@
|
||||
from .common import DeviceOcrResult
|
||||
from .ocr import DeviceOcr
|
||||
|
18
src/arcaea_offline_ocr/device/common.py
Normal file
18
src/arcaea_offline_ocr/device/common.py
Normal file
@ -0,0 +1,18 @@
|
||||
from typing import Optional
|
||||
|
||||
import attrs
|
||||
|
||||
|
||||
@attrs.define
|
||||
class DeviceOcrResult:
|
||||
rating_class: int
|
||||
pure: int
|
||||
far: int
|
||||
lost: int
|
||||
score: int
|
||||
max_recall: Optional[int] = None
|
||||
song_id: Optional[str] = None
|
||||
song_id_possibility: Optional[float] = None
|
||||
clear_status: Optional[int] = None
|
||||
partner_id: Optional[str] = None
|
||||
partner_id_possibility: Optional[float] = None
|
162
src/arcaea_offline_ocr/device/ocr.py
Normal file
162
src/arcaea_offline_ocr/device/ocr.py
Normal file
@ -0,0 +1,162 @@
|
||||
import cv2
|
||||
import numpy as np
|
||||
|
||||
from ..crop import crop_xywh
|
||||
from ..ocr import (
|
||||
FixRects,
|
||||
ocr_digit_samples_knn,
|
||||
ocr_digits_by_contour_knn,
|
||||
preprocess_hog,
|
||||
resize_fill_square,
|
||||
)
|
||||
from ..phash_db import ImagePhashDatabase
|
||||
from ..types import Mat
|
||||
from .common import DeviceOcrResult
|
||||
from .rois.extractor import DeviceRoisExtractor
|
||||
from .rois.masker import DeviceRoisMasker
|
||||
|
||||
|
||||
class DeviceOcr:
|
||||
def __init__(
|
||||
self,
|
||||
extractor: DeviceRoisExtractor,
|
||||
masker: DeviceRoisMasker,
|
||||
knn_model: cv2.ml.KNearest,
|
||||
phash_db: ImagePhashDatabase,
|
||||
):
|
||||
self.extractor = extractor
|
||||
self.masker = masker
|
||||
self.knn_model = knn_model
|
||||
self.phash_db = phash_db
|
||||
|
||||
def pfl(self, roi_gray: Mat, factor: float = 1.25):
|
||||
contours, _ = cv2.findContours(
|
||||
roi_gray, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE
|
||||
)
|
||||
filtered_contours = [c for c in contours if cv2.contourArea(c) >= 5 * factor]
|
||||
rects = [cv2.boundingRect(c) for c in filtered_contours]
|
||||
rects = FixRects.connect_broken(rects, roi_gray.shape[1], roi_gray.shape[0])
|
||||
|
||||
filtered_rects = [r for r in rects if r[2] >= 5 * factor and r[3] >= 6 * factor]
|
||||
filtered_rects = FixRects.split_connected(roi_gray, filtered_rects)
|
||||
filtered_rects = sorted(filtered_rects, key=lambda r: r[0])
|
||||
|
||||
roi_ocr = roi_gray.copy()
|
||||
filtered_contours_flattened = {tuple(c.flatten()) for c in filtered_contours}
|
||||
for contour in contours:
|
||||
if tuple(contour.flatten()) in filtered_contours_flattened:
|
||||
continue
|
||||
roi_ocr = cv2.fillPoly(roi_ocr, [contour], [0])
|
||||
digit_rois = [
|
||||
resize_fill_square(crop_xywh(roi_ocr, r), 20) for r in filtered_rects
|
||||
]
|
||||
|
||||
samples = preprocess_hog(digit_rois)
|
||||
return ocr_digit_samples_knn(samples, self.knn_model)
|
||||
|
||||
def pure(self):
|
||||
return self.pfl(self.masker.pure(self.extractor.pure))
|
||||
|
||||
def far(self):
|
||||
return self.pfl(self.masker.far(self.extractor.far))
|
||||
|
||||
def lost(self):
|
||||
return self.pfl(self.masker.lost(self.extractor.lost))
|
||||
|
||||
def score(self):
|
||||
roi = self.masker.score(self.extractor.score)
|
||||
contours, _ = cv2.findContours(roi, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
|
||||
for contour in contours:
|
||||
if (
|
||||
cv2.boundingRect(contour)[3] < roi.shape[0] * 0.6
|
||||
): # h < score_component_h * 0.6
|
||||
roi = cv2.fillPoly(roi, [contour], [0])
|
||||
return ocr_digits_by_contour_knn(roi, self.knn_model)
|
||||
|
||||
def rating_class(self):
|
||||
roi = self.extractor.rating_class
|
||||
results = [
|
||||
self.masker.rating_class_pst(roi),
|
||||
self.masker.rating_class_prs(roi),
|
||||
self.masker.rating_class_ftr(roi),
|
||||
self.masker.rating_class_byd(roi),
|
||||
self.masker.rating_class_etr(roi),
|
||||
]
|
||||
return max(enumerate(results), key=lambda i: np.count_nonzero(i[1]))[0]
|
||||
|
||||
def max_recall(self):
|
||||
return ocr_digits_by_contour_knn(
|
||||
self.masker.max_recall(self.extractor.max_recall), self.knn_model
|
||||
)
|
||||
|
||||
def clear_status(self):
|
||||
roi = self.extractor.clear_status
|
||||
results = [
|
||||
self.masker.clear_status_track_lost(roi),
|
||||
self.masker.clear_status_track_complete(roi),
|
||||
self.masker.clear_status_full_recall(roi),
|
||||
self.masker.clear_status_pure_memory(roi),
|
||||
]
|
||||
return max(enumerate(results), key=lambda i: np.count_nonzero(i[1]))[0]
|
||||
|
||||
def lookup_song_id(self):
|
||||
return self.phash_db.lookup_jacket(
|
||||
cv2.cvtColor(self.extractor.jacket, cv2.COLOR_BGR2GRAY)
|
||||
)
|
||||
|
||||
def song_id(self):
|
||||
return self.lookup_song_id()[0]
|
||||
|
||||
@staticmethod
|
||||
def preprocess_char_icon(img_gray: Mat):
|
||||
h, w = img_gray.shape[:2]
|
||||
img = cv2.copyMakeBorder(img_gray, w - h, 0, 0, 0, cv2.BORDER_REPLICATE)
|
||||
h, w = img.shape[:2]
|
||||
img = cv2.fillPoly(
|
||||
img,
|
||||
[
|
||||
np.array([[0, 0], [round(w / 2), 0], [0, round(h / 2)]], np.int32),
|
||||
np.array([[w, 0], [round(w / 2), 0], [w, round(h / 2)]], np.int32),
|
||||
np.array([[0, h], [round(w / 2), h], [0, round(h / 2)]], np.int32),
|
||||
np.array([[w, h], [round(w / 2), h], [w, round(h / 2)]], np.int32),
|
||||
],
|
||||
(128),
|
||||
)
|
||||
return img
|
||||
|
||||
def lookup_partner_id(self):
|
||||
return self.phash_db.lookup_partner_icon(
|
||||
self.preprocess_char_icon(
|
||||
cv2.cvtColor(self.extractor.partner_icon, cv2.COLOR_BGR2GRAY)
|
||||
)
|
||||
)
|
||||
|
||||
def partner_id(self):
|
||||
return self.lookup_partner_id()[0]
|
||||
|
||||
def ocr(self) -> DeviceOcrResult:
|
||||
rating_class = self.rating_class()
|
||||
pure = self.pure()
|
||||
far = self.far()
|
||||
lost = self.lost()
|
||||
score = self.score()
|
||||
max_recall = self.max_recall()
|
||||
clear_status = self.clear_status()
|
||||
|
||||
hash_len = self.phash_db.hash_size**2
|
||||
song_id, song_id_distance = self.lookup_song_id()
|
||||
partner_id, partner_id_distance = self.lookup_partner_id()
|
||||
|
||||
return DeviceOcrResult(
|
||||
rating_class=rating_class,
|
||||
pure=pure,
|
||||
far=far,
|
||||
lost=lost,
|
||||
score=score,
|
||||
max_recall=max_recall,
|
||||
song_id=song_id,
|
||||
song_id_possibility=1 - song_id_distance / hash_len,
|
||||
clear_status=clear_status,
|
||||
partner_id=partner_id,
|
||||
partner_id_possibility=1 - partner_id_distance / hash_len,
|
||||
)
|
3
src/arcaea_offline_ocr/device/rois/__init__.py
Normal file
3
src/arcaea_offline_ocr/device/rois/__init__.py
Normal file
@ -0,0 +1,3 @@
|
||||
from .definition import *
|
||||
from .extractor import *
|
||||
from .masker import *
|
@ -0,0 +1,2 @@
|
||||
from .auto import *
|
||||
from .common import DeviceRois
|
255
src/arcaea_offline_ocr/device/rois/definition/auto.py
Normal file
255
src/arcaea_offline_ocr/device/rois/definition/auto.py
Normal file
@ -0,0 +1,255 @@
|
||||
from .common import DeviceRois
|
||||
|
||||
__all__ = ["DeviceRoisAuto", "DeviceRoisAutoT1", "DeviceRoisAutoT2"]
|
||||
|
||||
|
||||
class DeviceRoisAuto(DeviceRois):
|
||||
def __init__(self, w: int, h: int):
|
||||
self.w = w
|
||||
self.h = h
|
||||
|
||||
|
||||
class DeviceRoisAutoT1(DeviceRoisAuto):
|
||||
@property
|
||||
def factor(self):
|
||||
return (
|
||||
((self.w / 16) * 9) / 720 if (self.w / self.h) < (16 / 9) else self.h / 720
|
||||
)
|
||||
|
||||
@property
|
||||
def w_mid(self):
|
||||
return self.w / 2
|
||||
|
||||
@property
|
||||
def h_mid(self):
|
||||
return self.h / 2
|
||||
|
||||
@property
|
||||
def top_bar(self):
|
||||
return (0, 0, self.w, 50 * self.factor)
|
||||
|
||||
@property
|
||||
def layout_area_h_mid(self):
|
||||
return self.h / 2 + self.top_bar[3]
|
||||
|
||||
@property
|
||||
def pfl_left_from_w_mid(self):
|
||||
return 5 * self.factor
|
||||
|
||||
@property
|
||||
def pfl_x(self):
|
||||
return self.w_mid + self.pfl_left_from_w_mid
|
||||
|
||||
@property
|
||||
def pfl_w(self):
|
||||
return 76 * self.factor
|
||||
|
||||
@property
|
||||
def pfl_h(self):
|
||||
return 26 * self.factor
|
||||
|
||||
@property
|
||||
def pure(self):
|
||||
return (
|
||||
self.pfl_x,
|
||||
self.layout_area_h_mid + 110 * self.factor,
|
||||
self.pfl_w,
|
||||
self.pfl_h,
|
||||
)
|
||||
|
||||
@property
|
||||
def far(self):
|
||||
return (
|
||||
self.pfl_x,
|
||||
self.pure[1] + self.pure[3] + 12 * self.factor,
|
||||
self.pfl_w,
|
||||
self.pfl_h,
|
||||
)
|
||||
|
||||
@property
|
||||
def lost(self):
|
||||
return (
|
||||
self.pfl_x,
|
||||
self.far[1] + self.far[3] + 10 * self.factor,
|
||||
self.pfl_w,
|
||||
self.pfl_h,
|
||||
)
|
||||
|
||||
@property
|
||||
def score(self):
|
||||
w = 280 * self.factor
|
||||
h = 45 * self.factor
|
||||
return (
|
||||
self.w_mid - w / 2,
|
||||
self.layout_area_h_mid - 75 * self.factor - h,
|
||||
w,
|
||||
h,
|
||||
)
|
||||
|
||||
@property
|
||||
def rating_class(self):
|
||||
return (
|
||||
self.w_mid - 610 * self.factor,
|
||||
self.layout_area_h_mid - 180 * self.factor,
|
||||
265 * self.factor,
|
||||
35 * self.factor,
|
||||
)
|
||||
|
||||
@property
|
||||
def max_recall(self):
|
||||
return (
|
||||
self.w_mid - 465 * self.factor,
|
||||
self.layout_area_h_mid - 215 * self.factor,
|
||||
150 * self.factor,
|
||||
35 * self.factor,
|
||||
)
|
||||
|
||||
@property
|
||||
def jacket(self):
|
||||
return (
|
||||
self.w_mid - 610 * self.factor,
|
||||
self.layout_area_h_mid - 143 * self.factor,
|
||||
375 * self.factor,
|
||||
375 * self.factor,
|
||||
)
|
||||
|
||||
@property
|
||||
def clear_status(self):
|
||||
w = 550 * self.factor
|
||||
h = 60 * self.factor
|
||||
return (
|
||||
self.w_mid - w / 2,
|
||||
self.layout_area_h_mid - 155 * self.factor - h,
|
||||
w * 0.4,
|
||||
h,
|
||||
)
|
||||
|
||||
@property
|
||||
def partner_icon(self):
|
||||
w = 90 * self.factor
|
||||
h = 75 * self.factor
|
||||
return (self.w_mid - w / 2, 0, w, h)
|
||||
|
||||
|
||||
class DeviceRoisAutoT2(DeviceRoisAuto):
|
||||
@property
|
||||
def factor(self):
|
||||
return (
|
||||
((self.w / 16) * 9) / 1080
|
||||
if (self.w / self.h) < (16 / 9)
|
||||
else self.h / 1080
|
||||
)
|
||||
|
||||
@property
|
||||
def w_mid(self):
|
||||
return self.w / 2
|
||||
|
||||
@property
|
||||
def h_mid(self):
|
||||
return self.h / 2
|
||||
|
||||
@property
|
||||
def top_bar(self):
|
||||
return (0, 0, self.w, 75 * self.factor)
|
||||
|
||||
@property
|
||||
def layout_area_h_mid(self):
|
||||
return self.h / 2 + self.top_bar[3]
|
||||
|
||||
@property
|
||||
def pfl_mid_from_w_mid(self):
|
||||
return 60 * self.factor
|
||||
|
||||
@property
|
||||
def pfl_x(self):
|
||||
return self.w_mid + 10 * self.factor
|
||||
|
||||
@property
|
||||
def pfl_w(self):
|
||||
return 100 * self.factor
|
||||
|
||||
@property
|
||||
def pfl_h(self):
|
||||
return 24 * self.factor
|
||||
|
||||
@property
|
||||
def pure(self):
|
||||
return (
|
||||
self.pfl_x,
|
||||
self.layout_area_h_mid + 175 * self.factor,
|
||||
self.pfl_w,
|
||||
self.pfl_h,
|
||||
)
|
||||
|
||||
@property
|
||||
def far(self):
|
||||
return (
|
||||
self.pfl_x,
|
||||
self.pure[1] + self.pure[3] + 30 * self.factor,
|
||||
self.pfl_w,
|
||||
self.pfl_h,
|
||||
)
|
||||
|
||||
@property
|
||||
def lost(self):
|
||||
return (
|
||||
self.pfl_x,
|
||||
self.far[1] + self.far[3] + 35 * self.factor,
|
||||
self.pfl_w,
|
||||
self.pfl_h,
|
||||
)
|
||||
|
||||
@property
|
||||
def score(self):
|
||||
w = 420 * self.factor
|
||||
h = 70 * self.factor
|
||||
return (
|
||||
self.w_mid - w / 2,
|
||||
self.layout_area_h_mid - 110 * self.factor - h,
|
||||
w,
|
||||
h,
|
||||
)
|
||||
|
||||
@property
|
||||
def rating_class(self):
|
||||
return (
|
||||
max(0, self.w_mid - 965 * self.factor),
|
||||
self.layout_area_h_mid - 330 * self.factor,
|
||||
350 * self.factor,
|
||||
110 * self.factor,
|
||||
)
|
||||
|
||||
@property
|
||||
def max_recall(self):
|
||||
return (
|
||||
self.w_mid - 625 * self.factor,
|
||||
self.layout_area_h_mid - 275 * self.factor,
|
||||
150 * self.factor,
|
||||
50 * self.factor,
|
||||
)
|
||||
|
||||
@property
|
||||
def jacket(self):
|
||||
return (
|
||||
self.w_mid - 915 * self.factor,
|
||||
self.layout_area_h_mid - 215 * self.factor,
|
||||
565 * self.factor,
|
||||
565 * self.factor,
|
||||
)
|
||||
|
||||
@property
|
||||
def clear_status(self):
|
||||
w = 825 * self.factor
|
||||
h = 90 * self.factor
|
||||
return (
|
||||
self.w_mid - w / 2,
|
||||
self.layout_area_h_mid - 235 * self.factor - h,
|
||||
w * 0.4,
|
||||
h,
|
||||
)
|
||||
|
||||
@property
|
||||
def partner_icon(self):
|
||||
w = 135 * self.factor
|
||||
h = 110 * self.factor
|
||||
return (self.w_mid - w / 2, 0, w, h)
|
15
src/arcaea_offline_ocr/device/rois/definition/common.py
Normal file
15
src/arcaea_offline_ocr/device/rois/definition/common.py
Normal file
@ -0,0 +1,15 @@
|
||||
from typing import Tuple
|
||||
|
||||
Rect = Tuple[int, int, int, int]
|
||||
|
||||
|
||||
class DeviceRois:
|
||||
pure: Rect
|
||||
far: Rect
|
||||
lost: Rect
|
||||
score: Rect
|
||||
rating_class: Rect
|
||||
max_recall: Rect
|
||||
jacket: Rect
|
||||
clear_status: Rect
|
||||
partner_icon: Rect
|
1
src/arcaea_offline_ocr/device/rois/extractor/__init__.py
Normal file
1
src/arcaea_offline_ocr/device/rois/extractor/__init__.py
Normal file
@ -0,0 +1 @@
|
||||
from .common import DeviceRoisExtractor
|
48
src/arcaea_offline_ocr/device/rois/extractor/common.py
Normal file
48
src/arcaea_offline_ocr/device/rois/extractor/common.py
Normal file
@ -0,0 +1,48 @@
|
||||
from ....crop import crop_xywh
|
||||
from ....types import Mat
|
||||
from ..definition.common import DeviceRois
|
||||
|
||||
|
||||
class DeviceRoisExtractor:
|
||||
def __init__(self, img: Mat, rois: DeviceRois):
|
||||
self.img = img
|
||||
self.sizes = rois
|
||||
|
||||
def __construct_int_rect(self, rect):
|
||||
return tuple(round(r) for r in rect)
|
||||
|
||||
@property
|
||||
def pure(self):
|
||||
return crop_xywh(self.img, self.__construct_int_rect(self.sizes.pure))
|
||||
|
||||
@property
|
||||
def far(self):
|
||||
return crop_xywh(self.img, self.__construct_int_rect(self.sizes.far))
|
||||
|
||||
@property
|
||||
def lost(self):
|
||||
return crop_xywh(self.img, self.__construct_int_rect(self.sizes.lost))
|
||||
|
||||
@property
|
||||
def score(self):
|
||||
return crop_xywh(self.img, self.__construct_int_rect(self.sizes.score))
|
||||
|
||||
@property
|
||||
def jacket(self):
|
||||
return crop_xywh(self.img, self.__construct_int_rect(self.sizes.jacket))
|
||||
|
||||
@property
|
||||
def rating_class(self):
|
||||
return crop_xywh(self.img, self.__construct_int_rect(self.sizes.rating_class))
|
||||
|
||||
@property
|
||||
def max_recall(self):
|
||||
return crop_xywh(self.img, self.__construct_int_rect(self.sizes.max_recall))
|
||||
|
||||
@property
|
||||
def clear_status(self):
|
||||
return crop_xywh(self.img, self.__construct_int_rect(self.sizes.clear_status))
|
||||
|
||||
@property
|
||||
def partner_icon(self):
|
||||
return crop_xywh(self.img, self.__construct_int_rect(self.sizes.partner_icon))
|
2
src/arcaea_offline_ocr/device/rois/masker/__init__.py
Normal file
2
src/arcaea_offline_ocr/device/rois/masker/__init__.py
Normal file
@ -0,0 +1,2 @@
|
||||
from .auto import *
|
||||
from .common import DeviceRoisMasker
|
231
src/arcaea_offline_ocr/device/rois/masker/auto.py
Normal file
231
src/arcaea_offline_ocr/device/rois/masker/auto.py
Normal file
@ -0,0 +1,231 @@
|
||||
import cv2
|
||||
import numpy as np
|
||||
|
||||
from ....types import Mat
|
||||
from .common import DeviceRoisMasker
|
||||
|
||||
|
||||
class DeviceRoisMaskerAuto(DeviceRoisMasker):
|
||||
# pylint: disable=abstract-method
|
||||
|
||||
@staticmethod
|
||||
def mask_bgr_in_hsv(roi_bgr: Mat, hsv_lower: Mat, hsv_upper: Mat):
|
||||
return cv2.inRange(
|
||||
cv2.cvtColor(roi_bgr, cv2.COLOR_BGR2HSV), hsv_lower, hsv_upper
|
||||
)
|
||||
|
||||
|
||||
class DeviceRoisMaskerAutoT1(DeviceRoisMaskerAuto):
|
||||
GRAY_BGR_MIN = np.array([50] * 3, np.uint8)
|
||||
GRAY_BGR_MAX = np.array([160] * 3, np.uint8)
|
||||
|
||||
SCORE_HSV_MIN = np.array([0, 0, 180], np.uint8)
|
||||
SCORE_HSV_MAX = np.array([179, 255, 255], np.uint8)
|
||||
|
||||
PST_HSV_MIN = np.array([100, 50, 80], np.uint8)
|
||||
PST_HSV_MAX = np.array([100, 255, 255], np.uint8)
|
||||
|
||||
PRS_HSV_MIN = np.array([43, 40, 75], np.uint8)
|
||||
PRS_HSV_MAX = np.array([50, 155, 190], np.uint8)
|
||||
|
||||
FTR_HSV_MIN = np.array([149, 30, 0], np.uint8)
|
||||
FTR_HSV_MAX = np.array([155, 181, 150], np.uint8)
|
||||
|
||||
BYD_HSV_MIN = np.array([170, 50, 50], np.uint8)
|
||||
BYD_HSV_MAX = np.array([179, 210, 198], np.uint8)
|
||||
|
||||
ETR_HSV_MIN = np.array([130, 60, 80], np.uint8)
|
||||
ETR_HSV_MAX = np.array([140, 145, 180], np.uint8)
|
||||
|
||||
TRACK_LOST_HSV_MIN = np.array([170, 75, 90], np.uint8)
|
||||
TRACK_LOST_HSV_MAX = np.array([175, 170, 160], np.uint8)
|
||||
|
||||
TRACK_COMPLETE_HSV_MIN = np.array([140, 0, 50], np.uint8)
|
||||
TRACK_COMPLETE_HSV_MAX = np.array([145, 50, 130], np.uint8)
|
||||
|
||||
FULL_RECALL_HSV_MIN = np.array([140, 60, 80], np.uint8)
|
||||
FULL_RECALL_HSV_MAX = np.array([150, 130, 145], np.uint8)
|
||||
|
||||
PURE_MEMORY_HSV_MIN = np.array([90, 70, 80], np.uint8)
|
||||
PURE_MEMORY_HSV_MAX = np.array([110, 200, 175], np.uint8)
|
||||
|
||||
@classmethod
|
||||
def gray(cls, roi_bgr: Mat) -> Mat:
|
||||
bgr_value_equal_mask = np.max(roi_bgr, axis=2) - np.min(roi_bgr, axis=2) <= 5
|
||||
img_bgr = roi_bgr.copy()
|
||||
img_bgr[~bgr_value_equal_mask] = np.array([0, 0, 0], roi_bgr.dtype)
|
||||
img_bgr = cv2.erode(img_bgr, cv2.getStructuringElement(cv2.MORPH_RECT, (2, 2)))
|
||||
img_bgr = cv2.dilate(img_bgr, cv2.getStructuringElement(cv2.MORPH_RECT, (1, 1)))
|
||||
return cv2.inRange(img_bgr, cls.GRAY_BGR_MIN, cls.GRAY_BGR_MAX)
|
||||
|
||||
@classmethod
|
||||
def pure(cls, roi_bgr: Mat) -> Mat:
|
||||
return cls.gray(roi_bgr)
|
||||
|
||||
@classmethod
|
||||
def far(cls, roi_bgr: Mat) -> Mat:
|
||||
return cls.gray(roi_bgr)
|
||||
|
||||
@classmethod
|
||||
def lost(cls, roi_bgr: Mat) -> Mat:
|
||||
return cls.gray(roi_bgr)
|
||||
|
||||
@classmethod
|
||||
def score(cls, roi_bgr: Mat) -> Mat:
|
||||
return cls.mask_bgr_in_hsv(roi_bgr, cls.SCORE_HSV_MIN, cls.SCORE_HSV_MAX)
|
||||
|
||||
@classmethod
|
||||
def rating_class_pst(cls, roi_bgr: Mat) -> Mat:
|
||||
return cls.mask_bgr_in_hsv(roi_bgr, cls.PST_HSV_MIN, cls.PST_HSV_MAX)
|
||||
|
||||
@classmethod
|
||||
def rating_class_prs(cls, roi_bgr: Mat) -> Mat:
|
||||
return cls.mask_bgr_in_hsv(roi_bgr, cls.PRS_HSV_MIN, cls.PRS_HSV_MAX)
|
||||
|
||||
@classmethod
|
||||
def rating_class_ftr(cls, roi_bgr: Mat) -> Mat:
|
||||
return cls.mask_bgr_in_hsv(roi_bgr, cls.FTR_HSV_MIN, cls.FTR_HSV_MAX)
|
||||
|
||||
@classmethod
|
||||
def rating_class_byd(cls, roi_bgr: Mat) -> Mat:
|
||||
return cls.mask_bgr_in_hsv(roi_bgr, cls.BYD_HSV_MIN, cls.BYD_HSV_MAX)
|
||||
|
||||
@classmethod
|
||||
def rating_class_etr(cls, roi_bgr: Mat) -> Mat:
|
||||
return cls.mask_bgr_in_hsv(roi_bgr, cls.ETR_HSV_MIN, cls.ETR_HSV_MAX)
|
||||
|
||||
@classmethod
|
||||
def max_recall(cls, roi_bgr: Mat) -> Mat:
|
||||
return cls.gray(roi_bgr)
|
||||
|
||||
@classmethod
|
||||
def clear_status_track_lost(cls, roi_bgr: Mat) -> Mat:
|
||||
return cls.mask_bgr_in_hsv(
|
||||
roi_bgr, cls.TRACK_LOST_HSV_MIN, cls.TRACK_LOST_HSV_MAX
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def clear_status_track_complete(cls, roi_bgr: Mat) -> Mat:
|
||||
return cls.mask_bgr_in_hsv(
|
||||
roi_bgr, cls.TRACK_COMPLETE_HSV_MIN, cls.TRACK_COMPLETE_HSV_MAX
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def clear_status_full_recall(cls, roi_bgr: Mat) -> Mat:
|
||||
return cls.mask_bgr_in_hsv(
|
||||
roi_bgr, cls.FULL_RECALL_HSV_MIN, cls.FULL_RECALL_HSV_MAX
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def clear_status_pure_memory(cls, roi_bgr: Mat) -> Mat:
|
||||
return cls.mask_bgr_in_hsv(
|
||||
roi_bgr, cls.PURE_MEMORY_HSV_MIN, cls.PURE_MEMORY_HSV_MAX
|
||||
)
|
||||
|
||||
|
||||
class DeviceRoisMaskerAutoT2(DeviceRoisMaskerAuto):
|
||||
PFL_HSV_MIN = np.array([0, 0, 248], np.uint8)
|
||||
PFL_HSV_MAX = np.array([179, 40, 255], np.uint8)
|
||||
|
||||
SCORE_HSV_MIN = np.array([0, 0, 180], np.uint8)
|
||||
SCORE_HSV_MAX = np.array([179, 255, 255], np.uint8)
|
||||
|
||||
PST_HSV_MIN = np.array([100, 50, 80], np.uint8)
|
||||
PST_HSV_MAX = np.array([100, 255, 255], np.uint8)
|
||||
|
||||
PRS_HSV_MIN = np.array([43, 40, 75], np.uint8)
|
||||
PRS_HSV_MAX = np.array([50, 155, 190], np.uint8)
|
||||
|
||||
FTR_HSV_MIN = np.array([149, 30, 0], np.uint8)
|
||||
FTR_HSV_MAX = np.array([155, 181, 150], np.uint8)
|
||||
|
||||
BYD_HSV_MIN = np.array([170, 50, 50], np.uint8)
|
||||
BYD_HSV_MAX = np.array([179, 210, 198], np.uint8)
|
||||
|
||||
ETR_HSV_MIN = np.array([130, 60, 80], np.uint8)
|
||||
ETR_HSV_MAX = np.array([140, 145, 180], np.uint8)
|
||||
|
||||
MAX_RECALL_HSV_MIN = np.array([125, 0, 0], np.uint8)
|
||||
MAX_RECALL_HSV_MAX = np.array([145, 100, 150], np.uint8)
|
||||
|
||||
TRACK_LOST_HSV_MIN = np.array([170, 75, 90], np.uint8)
|
||||
TRACK_LOST_HSV_MAX = np.array([175, 170, 160], np.uint8)
|
||||
|
||||
TRACK_COMPLETE_HSV_MIN = np.array([140, 0, 50], np.uint8)
|
||||
TRACK_COMPLETE_HSV_MAX = np.array([145, 50, 130], np.uint8)
|
||||
|
||||
FULL_RECALL_HSV_MIN = np.array([140, 60, 80], np.uint8)
|
||||
FULL_RECALL_HSV_MAX = np.array([150, 130, 145], np.uint8)
|
||||
|
||||
PURE_MEMORY_HSV_MIN = np.array([90, 70, 80], np.uint8)
|
||||
PURE_MEMORY_HSV_MAX = np.array([110, 200, 175], np.uint8)
|
||||
|
||||
@classmethod
|
||||
def pfl(cls, roi_bgr: Mat) -> Mat:
|
||||
return cls.mask_bgr_in_hsv(roi_bgr, cls.PFL_HSV_MIN, cls.PFL_HSV_MAX)
|
||||
|
||||
@classmethod
|
||||
def pure(cls, roi_bgr: Mat) -> Mat:
|
||||
return cls.pfl(roi_bgr)
|
||||
|
||||
@classmethod
|
||||
def far(cls, roi_bgr: Mat) -> Mat:
|
||||
return cls.pfl(roi_bgr)
|
||||
|
||||
@classmethod
|
||||
def lost(cls, roi_bgr: Mat) -> Mat:
|
||||
return cls.pfl(roi_bgr)
|
||||
|
||||
@classmethod
|
||||
def score(cls, roi_bgr: Mat) -> Mat:
|
||||
return cls.mask_bgr_in_hsv(roi_bgr, cls.SCORE_HSV_MIN, cls.SCORE_HSV_MAX)
|
||||
|
||||
@classmethod
|
||||
def rating_class_pst(cls, roi_bgr: Mat) -> Mat:
|
||||
return cls.mask_bgr_in_hsv(roi_bgr, cls.PST_HSV_MIN, cls.PST_HSV_MAX)
|
||||
|
||||
@classmethod
|
||||
def rating_class_prs(cls, roi_bgr: Mat) -> Mat:
|
||||
return cls.mask_bgr_in_hsv(roi_bgr, cls.PRS_HSV_MIN, cls.PRS_HSV_MAX)
|
||||
|
||||
@classmethod
|
||||
def rating_class_ftr(cls, roi_bgr: Mat) -> Mat:
|
||||
return cls.mask_bgr_in_hsv(roi_bgr, cls.FTR_HSV_MIN, cls.FTR_HSV_MAX)
|
||||
|
||||
@classmethod
|
||||
def rating_class_byd(cls, roi_bgr: Mat) -> Mat:
|
||||
return cls.mask_bgr_in_hsv(roi_bgr, cls.BYD_HSV_MIN, cls.BYD_HSV_MAX)
|
||||
|
||||
@classmethod
|
||||
def rating_class_etr(cls, roi_bgr: Mat) -> Mat:
|
||||
return cls.mask_bgr_in_hsv(roi_bgr, cls.ETR_HSV_MIN, cls.ETR_HSV_MAX)
|
||||
|
||||
@classmethod
|
||||
def max_recall(cls, roi_bgr: Mat) -> Mat:
|
||||
return cls.mask_bgr_in_hsv(
|
||||
roi_bgr, cls.MAX_RECALL_HSV_MIN, cls.MAX_RECALL_HSV_MAX
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def clear_status_track_lost(cls, roi_bgr: Mat) -> Mat:
|
||||
return cls.mask_bgr_in_hsv(
|
||||
roi_bgr, cls.TRACK_LOST_HSV_MIN, cls.TRACK_LOST_HSV_MAX
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def clear_status_track_complete(cls, roi_bgr: Mat) -> Mat:
|
||||
return cls.mask_bgr_in_hsv(
|
||||
roi_bgr, cls.TRACK_COMPLETE_HSV_MIN, cls.TRACK_COMPLETE_HSV_MAX
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def clear_status_full_recall(cls, roi_bgr: Mat) -> Mat:
|
||||
return cls.mask_bgr_in_hsv(
|
||||
roi_bgr, cls.FULL_RECALL_HSV_MIN, cls.FULL_RECALL_HSV_MAX
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def clear_status_pure_memory(cls, roi_bgr: Mat) -> Mat:
|
||||
return cls.mask_bgr_in_hsv(
|
||||
roi_bgr, cls.PURE_MEMORY_HSV_MIN, cls.PURE_MEMORY_HSV_MAX
|
||||
)
|
59
src/arcaea_offline_ocr/device/rois/masker/common.py
Normal file
59
src/arcaea_offline_ocr/device/rois/masker/common.py
Normal file
@ -0,0 +1,59 @@
|
||||
from ....types import Mat
|
||||
|
||||
|
||||
class DeviceRoisMasker:
|
||||
@classmethod
|
||||
def pure(cls, roi_bgr: Mat) -> Mat:
|
||||
raise NotImplementedError()
|
||||
|
||||
@classmethod
|
||||
def far(cls, roi_bgr: Mat) -> Mat:
|
||||
raise NotImplementedError()
|
||||
|
||||
@classmethod
|
||||
def lost(cls, roi_bgr: Mat) -> Mat:
|
||||
raise NotImplementedError()
|
||||
|
||||
@classmethod
|
||||
def score(cls, roi_bgr: Mat) -> Mat:
|
||||
raise NotImplementedError()
|
||||
|
||||
@classmethod
|
||||
def rating_class_pst(cls, roi_bgr: Mat) -> Mat:
|
||||
raise NotImplementedError()
|
||||
|
||||
@classmethod
|
||||
def rating_class_prs(cls, roi_bgr: Mat) -> Mat:
|
||||
raise NotImplementedError()
|
||||
|
||||
@classmethod
|
||||
def rating_class_ftr(cls, roi_bgr: Mat) -> Mat:
|
||||
raise NotImplementedError()
|
||||
|
||||
@classmethod
|
||||
def rating_class_byd(cls, roi_bgr: Mat) -> Mat:
|
||||
raise NotImplementedError()
|
||||
|
||||
@classmethod
|
||||
def rating_class_etr(cls, roi_bgr: Mat) -> Mat:
|
||||
raise NotImplementedError()
|
||||
|
||||
@classmethod
|
||||
def max_recall(cls, roi_bgr: Mat) -> Mat:
|
||||
raise NotImplementedError()
|
||||
|
||||
@classmethod
|
||||
def clear_status_track_lost(cls, roi_bgr: Mat) -> Mat:
|
||||
raise NotImplementedError()
|
||||
|
||||
@classmethod
|
||||
def clear_status_track_complete(cls, roi_bgr: Mat) -> Mat:
|
||||
raise NotImplementedError()
|
||||
|
||||
@classmethod
|
||||
def clear_status_full_recall(cls, roi_bgr: Mat) -> Mat:
|
||||
raise NotImplementedError()
|
||||
|
||||
@classmethod
|
||||
def clear_status_pure_memory(cls, roi_bgr: Mat) -> Mat:
|
||||
raise NotImplementedError()
|
@ -1,16 +0,0 @@
|
||||
from typing import Optional
|
||||
|
||||
import attrs
|
||||
|
||||
|
||||
@attrs.define
|
||||
class DeviceOcrResult:
|
||||
rating_class: int
|
||||
pure: int
|
||||
far: int
|
||||
lost: int
|
||||
score: int
|
||||
max_recall: int
|
||||
song_id: Optional[str] = None
|
||||
title: Optional[str] = None
|
||||
clear_type: Optional[str] = None
|
@ -1,53 +0,0 @@
|
||||
from typing import Tuple
|
||||
|
||||
from ...types import Mat
|
||||
from .definition import DeviceV1
|
||||
|
||||
__all__ = [
|
||||
"crop_img",
|
||||
"crop_from_device_attr",
|
||||
"crop_to_pure",
|
||||
"crop_to_far",
|
||||
"crop_to_lost",
|
||||
"crop_to_max_recall",
|
||||
"crop_to_rating_class",
|
||||
"crop_to_score",
|
||||
"crop_to_title",
|
||||
]
|
||||
|
||||
|
||||
def crop_img(img: Mat, *, top: int, left: int, bottom: int, right: int):
|
||||
return img[top:bottom, left:right]
|
||||
|
||||
|
||||
def crop_from_device_attr(img: Mat, rect: Tuple[int, int, int, int]):
|
||||
x, y, w, h = rect
|
||||
return crop_img(img, top=y, left=x, bottom=y + h, right=x + w)
|
||||
|
||||
|
||||
def crop_to_pure(screenshot: Mat, device: DeviceV1):
|
||||
return crop_from_device_attr(screenshot, device.pure)
|
||||
|
||||
|
||||
def crop_to_far(screenshot: Mat, device: DeviceV1):
|
||||
return crop_from_device_attr(screenshot, device.far)
|
||||
|
||||
|
||||
def crop_to_lost(screenshot: Mat, device: DeviceV1):
|
||||
return crop_from_device_attr(screenshot, device.lost)
|
||||
|
||||
|
||||
def crop_to_max_recall(screenshot: Mat, device: DeviceV1):
|
||||
return crop_from_device_attr(screenshot, device.max_recall)
|
||||
|
||||
|
||||
def crop_to_rating_class(screenshot: Mat, device: DeviceV1):
|
||||
return crop_from_device_attr(screenshot, device.rating_class)
|
||||
|
||||
|
||||
def crop_to_score(screenshot: Mat, device: DeviceV1):
|
||||
return crop_from_device_attr(screenshot, device.score)
|
||||
|
||||
|
||||
def crop_to_title(screenshot: Mat, device: DeviceV1):
|
||||
return crop_from_device_attr(screenshot, device.title)
|
@ -1,37 +0,0 @@
|
||||
from dataclasses import dataclass
|
||||
from typing import Any, Dict, Tuple
|
||||
|
||||
__all__ = ["DeviceV1"]
|
||||
|
||||
|
||||
@dataclass(kw_only=True)
|
||||
class DeviceV1:
|
||||
version: int
|
||||
uuid: str
|
||||
name: str
|
||||
pure: Tuple[int, int, int, int]
|
||||
far: Tuple[int, int, int, int]
|
||||
lost: Tuple[int, int, int, int]
|
||||
max_recall: Tuple[int, int, int, int]
|
||||
rating_class: Tuple[int, int, int, int]
|
||||
score: Tuple[int, int, int, int]
|
||||
title: Tuple[int, int, int, int]
|
||||
|
||||
@classmethod
|
||||
def from_json_object(cls, json_dict: Dict[str, Any]):
|
||||
if json_dict["version"] == 1:
|
||||
return cls(
|
||||
version=1,
|
||||
uuid=json_dict["uuid"],
|
||||
name=json_dict["name"],
|
||||
pure=json_dict["pure"],
|
||||
far=json_dict["far"],
|
||||
lost=json_dict["lost"],
|
||||
max_recall=json_dict["max_recall"],
|
||||
rating_class=json_dict["rating_class"],
|
||||
score=json_dict["score"],
|
||||
title=json_dict["title"],
|
||||
)
|
||||
|
||||
def repr_info(self):
|
||||
return f"Device(version={self.version}, uuid={repr(self.uuid)}, name={repr(self.name)})"
|
@ -1,86 +0,0 @@
|
||||
from typing import List
|
||||
|
||||
import cv2
|
||||
|
||||
from ...crop import crop_xywh
|
||||
from ...mask import mask_gray, mask_white
|
||||
from ...ocr import ocr_digits_by_contour_knn, ocr_rating_class
|
||||
from ...types import Mat, cv2_ml_KNearest
|
||||
from ..shared import DeviceOcrResult
|
||||
from .crop import *
|
||||
from .definition import DeviceV1
|
||||
|
||||
|
||||
class DeviceV1Ocr:
|
||||
def __init__(self, device: DeviceV1, knn_model: cv2_ml_KNearest):
|
||||
self.__device = device
|
||||
self.__knn_model = knn_model
|
||||
|
||||
@property
|
||||
def device(self):
|
||||
return self.__device
|
||||
|
||||
@device.setter
|
||||
def device(self, value):
|
||||
self.__device = value
|
||||
|
||||
@property
|
||||
def knn_model(self):
|
||||
return self.__knn_model
|
||||
|
||||
@knn_model.setter
|
||||
def knn_model(self, value):
|
||||
self.__knn_model = value
|
||||
|
||||
def preprocess_score_roi(self, __roi_gray: Mat) -> List[Mat]:
|
||||
roi_gray = __roi_gray.copy()
|
||||
contours, _ = cv2.findContours(
|
||||
roi_gray, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE
|
||||
)
|
||||
for contour in contours:
|
||||
rect = cv2.boundingRect(contour)
|
||||
if rect[3] > roi_gray.shape[0] * 0.6:
|
||||
continue
|
||||
roi_gray = cv2.fillPoly(roi_gray, [contour], 0)
|
||||
return roi_gray
|
||||
|
||||
def ocr(self, img_bgr: Mat):
|
||||
rating_class_roi = crop_to_rating_class(img_bgr, self.device)
|
||||
rating_class = ocr_rating_class(rating_class_roi)
|
||||
|
||||
pfl_mr_roi = [
|
||||
crop_to_pure(img_bgr, self.device),
|
||||
crop_to_far(img_bgr, self.device),
|
||||
crop_to_lost(img_bgr, self.device),
|
||||
crop_to_max_recall(img_bgr, self.device),
|
||||
]
|
||||
pfl_mr_roi = [mask_gray(roi) for roi in pfl_mr_roi]
|
||||
|
||||
pure, far, lost = [
|
||||
ocr_digits_by_contour_knn(roi, self.knn_model) for roi in pfl_mr_roi[:3]
|
||||
]
|
||||
|
||||
max_recall_contours, _ = cv2.findContours(
|
||||
pfl_mr_roi[3], cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE
|
||||
)
|
||||
max_recall_rects = [cv2.boundingRect(c) for c in max_recall_contours]
|
||||
max_recall_rect = sorted(max_recall_rects, key=lambda r: r[0])[-1]
|
||||
max_recall_roi = crop_xywh(img_bgr, max_recall_rect)
|
||||
max_recall = ocr_digits_by_contour_knn(max_recall_roi, self.knn_model)
|
||||
|
||||
score_roi = crop_to_score(img_bgr, self.device)
|
||||
score_roi = mask_white(score_roi)
|
||||
score_roi = self.preprocess_score_roi(score_roi)
|
||||
score = ocr_digits_by_contour_knn(score_roi, self.knn_model)
|
||||
|
||||
return DeviceOcrResult(
|
||||
song_id=None,
|
||||
title=None,
|
||||
rating_class=rating_class,
|
||||
pure=pure,
|
||||
far=far,
|
||||
lost=lost,
|
||||
score=score,
|
||||
max_recall=max_recall,
|
||||
clear_type=None,
|
||||
)
|
@ -1,4 +0,0 @@
|
||||
from .definition import DeviceV2
|
||||
from .ocr import DeviceV2Ocr
|
||||
from .rois import DeviceV2AutoRois, DeviceV2Rois
|
||||
from .shared import MAX_RECALL_CLOSE_KERNEL
|
@ -1,26 +0,0 @@
|
||||
from typing import Iterable
|
||||
|
||||
from attrs import define, field
|
||||
|
||||
from ...types import XYWHRect
|
||||
|
||||
|
||||
def iterable_to_xywh_rect(__iter: Iterable) -> XYWHRect:
|
||||
return XYWHRect(*__iter)
|
||||
|
||||
|
||||
@define(kw_only=True)
|
||||
class DeviceV2:
|
||||
version = field(type=int)
|
||||
uuid = field(type=str)
|
||||
name = field(type=str)
|
||||
crop_black_edges = field(type=bool)
|
||||
factor = field(type=float)
|
||||
pure = field(converter=iterable_to_xywh_rect, default=[0, 0, 0, 0])
|
||||
far = field(converter=iterable_to_xywh_rect, default=[0, 0, 0, 0])
|
||||
lost = field(converter=iterable_to_xywh_rect, default=[0, 0, 0, 0])
|
||||
score = field(converter=iterable_to_xywh_rect, default=[0, 0, 0, 0])
|
||||
max_recall_rating_class = field(
|
||||
converter=iterable_to_xywh_rect, default=[0, 0, 0, 0]
|
||||
)
|
||||
title = field(converter=iterable_to_xywh_rect, default=[0, 0, 0, 0])
|
@ -1,147 +0,0 @@
|
||||
import math
|
||||
from functools import lru_cache
|
||||
from typing import Sequence
|
||||
|
||||
import cv2
|
||||
import numpy as np
|
||||
|
||||
from ...crop import crop_xywh
|
||||
from ...mask import mask_byd, mask_ftr, mask_gray, mask_prs, mask_pst, mask_white
|
||||
from ...ocr import (
|
||||
FixRects,
|
||||
ocr_digit_samples_knn,
|
||||
ocr_digits_by_contour_knn,
|
||||
preprocess_hog,
|
||||
resize_fill_square,
|
||||
)
|
||||
from ...sift_db import SIFTDatabase
|
||||
from ...types import Mat, cv2_ml_KNearest
|
||||
from ..shared import DeviceOcrResult
|
||||
from .preprocess import find_digits_preprocess
|
||||
from .rois import DeviceV2Rois
|
||||
from .shared import MAX_RECALL_CLOSE_KERNEL
|
||||
|
||||
|
||||
class DeviceV2Ocr:
|
||||
def __init__(self, knn_model: cv2_ml_KNearest, sift_db: SIFTDatabase):
|
||||
self.__knn_model = knn_model
|
||||
self.__sift_db = sift_db
|
||||
|
||||
@property
|
||||
def knn_model(self):
|
||||
if not self.__knn_model:
|
||||
raise ValueError("`knn_model` unset.")
|
||||
return self.__knn_model
|
||||
|
||||
@knn_model.setter
|
||||
def knn_model(self, value: cv2_ml_KNearest):
|
||||
self.__knn_model = value
|
||||
|
||||
@property
|
||||
def sift_db(self):
|
||||
if not self.__sift_db:
|
||||
raise ValueError("`sift_db` unset.")
|
||||
return self.__sift_db
|
||||
|
||||
@sift_db.setter
|
||||
def sift_db(self, value: SIFTDatabase):
|
||||
self.__sift_db = value
|
||||
|
||||
@lru_cache
|
||||
def _get_digit_widths(self, num_list: Sequence[int], factor: float):
|
||||
widths = set()
|
||||
for n in num_list:
|
||||
lower = math.floor(n * factor)
|
||||
upper = math.ceil(n * factor)
|
||||
widths.update(range(lower, upper + 1))
|
||||
return widths
|
||||
|
||||
def _base_ocr_pfl(self, roi_masked: Mat, factor: float = 1.0):
|
||||
contours, _ = cv2.findContours(
|
||||
roi_masked, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE
|
||||
)
|
||||
filtered_contours = [c for c in contours if cv2.contourArea(c) >= 5 * factor]
|
||||
rects = [cv2.boundingRect(c) for c in filtered_contours]
|
||||
rects = FixRects.connect_broken(rects, roi_masked.shape[1], roi_masked.shape[0])
|
||||
rect_contour_map = dict(zip(rects, filtered_contours))
|
||||
|
||||
filtered_rects = [r for r in rects if r[2] >= 5 * factor and r[3] >= 6 * factor]
|
||||
filtered_rects = FixRects.split_connected(roi_masked, filtered_rects)
|
||||
filtered_rects = sorted(filtered_rects, key=lambda r: r[0])
|
||||
|
||||
roi_ocr = roi_masked.copy()
|
||||
filtered_contours_flattened = {tuple(c.flatten()) for c in filtered_contours}
|
||||
for contour in contours:
|
||||
if tuple(contour.flatten()) in filtered_contours_flattened:
|
||||
continue
|
||||
roi_ocr = cv2.fillPoly(roi_ocr, [contour], [0])
|
||||
digit_rois = [
|
||||
resize_fill_square(crop_xywh(roi_ocr, r), 20)
|
||||
for r in sorted(filtered_rects, key=lambda r: r[0])
|
||||
]
|
||||
# [cv2.imshow(f"r{i}", r) for i, r in enumerate(digit_rois)]
|
||||
# cv2.waitKey(0)
|
||||
samples = preprocess_hog(digit_rois)
|
||||
return ocr_digit_samples_knn(samples, self.knn_model)
|
||||
|
||||
def ocr_song_id(self, rois: DeviceV2Rois):
|
||||
jacket = cv2.cvtColor(rois.jacket, cv2.COLOR_BGR2GRAY)
|
||||
return self.sift_db.lookup_img(jacket)[0]
|
||||
|
||||
def ocr_rating_class(self, rois: DeviceV2Rois):
|
||||
roi = cv2.cvtColor(rois.max_recall_rating_class, cv2.COLOR_BGR2HSV)
|
||||
results = [mask_pst(roi), mask_prs(roi), mask_ftr(roi), mask_byd(roi)]
|
||||
return max(enumerate(results), key=lambda i: np.count_nonzero(i[1]))[0]
|
||||
|
||||
def ocr_score(self, rois: DeviceV2Rois):
|
||||
roi = cv2.cvtColor(rois.score, cv2.COLOR_BGR2HSV)
|
||||
roi = mask_white(roi)
|
||||
contours, _ = cv2.findContours(roi, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
|
||||
for contour in contours:
|
||||
x, y, w, h = cv2.boundingRect(contour)
|
||||
if h < roi.shape[0] * 0.6:
|
||||
roi = cv2.fillPoly(roi, [contour], [0])
|
||||
return ocr_digits_by_contour_knn(roi, self.knn_model)
|
||||
|
||||
def ocr_pure(self, rois: DeviceV2Rois):
|
||||
roi = mask_gray(rois.pure)
|
||||
return self._base_ocr_pfl(roi, rois.sizes.factor)
|
||||
|
||||
def ocr_far(self, rois: DeviceV2Rois):
|
||||
roi = mask_gray(rois.far)
|
||||
return self._base_ocr_pfl(roi, rois.sizes.factor)
|
||||
|
||||
def ocr_lost(self, rois: DeviceV2Rois):
|
||||
roi = mask_gray(rois.lost)
|
||||
return self._base_ocr_pfl(roi, rois.sizes.factor)
|
||||
|
||||
def ocr_max_recall(self, rois: DeviceV2Rois):
|
||||
roi = mask_gray(rois.max_recall_rating_class)
|
||||
roi_closed = cv2.morphologyEx(roi, cv2.MORPH_CLOSE, MAX_RECALL_CLOSE_KERNEL)
|
||||
contours, _ = cv2.findContours(
|
||||
roi_closed, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE
|
||||
)
|
||||
rects = sorted(
|
||||
[cv2.boundingRect(c) for c in contours], key=lambda r: r[0], reverse=True
|
||||
)
|
||||
max_recall_roi = crop_xywh(roi, rects[0])
|
||||
return ocr_digits_by_contour_knn(max_recall_roi, self.knn_model)
|
||||
|
||||
def ocr(self, rois: DeviceV2Rois):
|
||||
song_id = self.ocr_song_id(rois)
|
||||
rating_class = self.ocr_rating_class(rois)
|
||||
score = self.ocr_score(rois)
|
||||
pure = self.ocr_pure(rois)
|
||||
far = self.ocr_far(rois)
|
||||
lost = self.ocr_lost(rois)
|
||||
max_recall = self.ocr_max_recall(rois)
|
||||
|
||||
return DeviceOcrResult(
|
||||
rating_class=rating_class,
|
||||
pure=pure,
|
||||
far=far,
|
||||
lost=lost,
|
||||
score=score,
|
||||
max_recall=max_recall,
|
||||
song_id=song_id,
|
||||
)
|
@ -1,54 +0,0 @@
|
||||
import cv2
|
||||
|
||||
from ...types import Mat
|
||||
from .shared import *
|
||||
|
||||
|
||||
def find_digits_preprocess(__img_masked: Mat) -> Mat:
|
||||
img = __img_masked.copy()
|
||||
img_denoised = cv2.morphologyEx(img, cv2.MORPH_OPEN, PFL_DENOISE_KERNEL)
|
||||
# img_denoised = cv2.bitwise_and(img, img_denoised)
|
||||
|
||||
denoise_contours, _ = cv2.findContours(
|
||||
img_denoised, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE
|
||||
)
|
||||
# cv2.drawContours(img_denoised, contours, -1, [128], 2)
|
||||
|
||||
# fill all contour.area < max(contour.area) * ratio with black pixels
|
||||
# for denoise purposes
|
||||
|
||||
# define threshold contour area
|
||||
# we assume the smallest digit "1", is 80% height of the image,
|
||||
# and at least 1.5 pixel wide, considering cv2.contourArea always
|
||||
# returns a smaller value than the actual contour area.
|
||||
max_contour_area = __img_masked.shape[0] * 0.8 * 1.5
|
||||
filtered_contours = list(
|
||||
filter(lambda c: cv2.contourArea(c) >= max_contour_area, denoise_contours)
|
||||
)
|
||||
|
||||
filtered_contours_flattened = {tuple(c.flatten()) for c in filtered_contours}
|
||||
|
||||
for contour in denoise_contours:
|
||||
if tuple(contour.flatten()) not in filtered_contours_flattened:
|
||||
img_denoised = cv2.fillPoly(img_denoised, [contour], [0])
|
||||
|
||||
# old algorithm, finding the largest contour area
|
||||
## contour_area_tuples = [(contour, cv2.contourArea(contour)) for contour in contours]
|
||||
## contour_area_tuples = sorted(
|
||||
## contour_area_tuples, key=lambda item: item[1], reverse=True
|
||||
## )
|
||||
## max_contour_area = contour_area_tuples[0][1]
|
||||
## print(max_contour_area, [item[1] for item in contour_area_tuples])
|
||||
## contours_filter_end_index = len(contours)
|
||||
## for i, item in enumerate(contour_area_tuples):
|
||||
## contour, area = item
|
||||
## if area < max_contour_area * 0.15:
|
||||
## contours_filter_end_index = i
|
||||
## break
|
||||
## contours = [item[0] for item in contour_area_tuples]
|
||||
## for contour in contours[-contours_filter_end_index - 1:]:
|
||||
## img = cv2.fillPoly(img, [contour], [0])
|
||||
## img_denoised = cv2.fillPoly(img_denoised, [contour], [0])
|
||||
## contours = contours[:contours_filter_end_index]
|
||||
|
||||
return img_denoised
|
@ -1,367 +0,0 @@
|
||||
from typing import Tuple, Union
|
||||
|
||||
from ...crop import crop_black_edges, crop_xywh
|
||||
from ...types import Mat, XYWHRect
|
||||
from .definition import DeviceV2
|
||||
|
||||
|
||||
def to_int(num: Union[int, float]) -> int:
|
||||
return round(num)
|
||||
|
||||
|
||||
def apply_factor(num: Union[int, float], factor: float):
|
||||
return num * factor
|
||||
|
||||
|
||||
class Sizes:
|
||||
def __init__(self, factor: float):
|
||||
raise NotImplementedError()
|
||||
|
||||
@property
|
||||
def TOP_BAR_HEIGHT(self):
|
||||
...
|
||||
|
||||
@property
|
||||
def SCORE_PANEL(self) -> Tuple[int, int]:
|
||||
...
|
||||
|
||||
@property
|
||||
def PFL_TOP_FROM_VMID(self):
|
||||
...
|
||||
|
||||
@property
|
||||
def PFL_LEFT_FROM_HMID(self):
|
||||
...
|
||||
|
||||
@property
|
||||
def PFL_WIDTH(self):
|
||||
...
|
||||
|
||||
@property
|
||||
def PFL_FONT_PX(self):
|
||||
...
|
||||
|
||||
@property
|
||||
def PURE_FAR_GAP(self):
|
||||
...
|
||||
|
||||
@property
|
||||
def FAR_LOST_GAP(self):
|
||||
...
|
||||
|
||||
@property
|
||||
def SCORE_BOTTOM_FROM_VMID(self):
|
||||
...
|
||||
|
||||
@property
|
||||
def SCORE_FONT_PX(self):
|
||||
...
|
||||
|
||||
@property
|
||||
def SCORE_WIDTH(self):
|
||||
...
|
||||
|
||||
@property
|
||||
def JACKET_RIGHT_FROM_HOR_MID(self):
|
||||
...
|
||||
|
||||
@property
|
||||
def JACKET_WIDTH(self):
|
||||
...
|
||||
|
||||
@property
|
||||
def MR_RT_RIGHT_FROM_HMID(self):
|
||||
...
|
||||
|
||||
@property
|
||||
def MR_RT_WIDTH(self):
|
||||
...
|
||||
|
||||
@property
|
||||
def MR_RT_HEIGHT(self):
|
||||
...
|
||||
|
||||
@property
|
||||
def TITLE_BOTTOM_FROM_VMID(self):
|
||||
...
|
||||
|
||||
@property
|
||||
def TITLE_FONT_PX(self):
|
||||
...
|
||||
|
||||
@property
|
||||
def TITLE_WIDTH_RIGHT(self):
|
||||
...
|
||||
|
||||
|
||||
class SizesV1(Sizes):
|
||||
def __init__(self, factor: float):
|
||||
self.factor = factor
|
||||
|
||||
def apply_factor(self, num):
|
||||
return apply_factor(num, self.factor)
|
||||
|
||||
@property
|
||||
def TOP_BAR_HEIGHT(self):
|
||||
return self.apply_factor(50)
|
||||
|
||||
@property
|
||||
def SCORE_PANEL(self) -> Tuple[int, int]:
|
||||
return tuple(self.apply_factor(num) for num in [485, 239])
|
||||
|
||||
@property
|
||||
def PFL_TOP_FROM_VMID(self):
|
||||
return self.apply_factor(135)
|
||||
|
||||
@property
|
||||
def PFL_LEFT_FROM_HMID(self):
|
||||
return self.apply_factor(5)
|
||||
|
||||
@property
|
||||
def PFL_WIDTH(self):
|
||||
return self.apply_factor(76)
|
||||
|
||||
@property
|
||||
def PFL_FONT_PX(self):
|
||||
return self.apply_factor(26)
|
||||
|
||||
@property
|
||||
def PURE_FAR_GAP(self):
|
||||
return self.apply_factor(12)
|
||||
|
||||
@property
|
||||
def FAR_LOST_GAP(self):
|
||||
return self.apply_factor(10)
|
||||
|
||||
@property
|
||||
def SCORE_BOTTOM_FROM_VMID(self):
|
||||
return self.apply_factor(-50)
|
||||
|
||||
@property
|
||||
def SCORE_FONT_PX(self):
|
||||
return self.apply_factor(45)
|
||||
|
||||
@property
|
||||
def SCORE_WIDTH(self):
|
||||
return self.apply_factor(280)
|
||||
|
||||
@property
|
||||
def JACKET_RIGHT_FROM_HOR_MID(self):
|
||||
return self.apply_factor(-235)
|
||||
|
||||
@property
|
||||
def JACKET_WIDTH(self):
|
||||
return self.apply_factor(375)
|
||||
|
||||
@property
|
||||
def MR_RT_RIGHT_FROM_HMID(self):
|
||||
return self.apply_factor(-300)
|
||||
|
||||
@property
|
||||
def MR_RT_WIDTH(self):
|
||||
return self.apply_factor(275)
|
||||
|
||||
@property
|
||||
def MR_RT_HEIGHT(self):
|
||||
return self.apply_factor(75)
|
||||
|
||||
@property
|
||||
def TITLE_BOTTOM_FROM_VMID(self):
|
||||
return self.apply_factor(-265)
|
||||
|
||||
@property
|
||||
def TITLE_FONT_PX(self):
|
||||
return self.apply_factor(40)
|
||||
|
||||
@property
|
||||
def TITLE_WIDTH_RIGHT(self):
|
||||
return self.apply_factor(275)
|
||||
|
||||
|
||||
class DeviceV2Rois:
|
||||
def __init__(self, device: DeviceV2, img: Mat):
|
||||
self.device = device
|
||||
self.sizes = SizesV1(self.device.factor)
|
||||
self.__img = img
|
||||
|
||||
@staticmethod
|
||||
def construct_int_xywh_rect(x, y, w, h) -> XYWHRect:
|
||||
return XYWHRect(*[to_int(item) for item in [x, y, w, h]])
|
||||
|
||||
@property
|
||||
def img(self):
|
||||
return self.__img
|
||||
|
||||
@img.setter
|
||||
def img(self, img: Mat):
|
||||
self.__img = (
|
||||
crop_black_edges(img) if self.device.crop_black_edges else img.copy()
|
||||
)
|
||||
|
||||
@property
|
||||
def h(self):
|
||||
return self.img.shape[0]
|
||||
|
||||
@property
|
||||
def vmid(self):
|
||||
return self.h / 2
|
||||
|
||||
@property
|
||||
def w(self):
|
||||
return self.img.shape[1]
|
||||
|
||||
@property
|
||||
def hmid(self):
|
||||
return self.w / 2
|
||||
|
||||
@property
|
||||
def h_without_top_bar(self):
|
||||
"""img_height -= top_bar_height"""
|
||||
return self.h - self.sizes.TOP_BAR_HEIGHT
|
||||
|
||||
@property
|
||||
def h_without_top_bar_mid(self):
|
||||
return self.sizes.TOP_BAR_HEIGHT + self.h_without_top_bar / 2
|
||||
|
||||
@property
|
||||
def pfl_top(self):
|
||||
return self.h_without_top_bar_mid + self.sizes.PFL_TOP_FROM_VMID
|
||||
|
||||
@property
|
||||
def pfl_left(self):
|
||||
return self.hmid + self.sizes.PFL_LEFT_FROM_HMID
|
||||
|
||||
@property
|
||||
def pure_rect(self):
|
||||
return self.construct_int_xywh_rect(
|
||||
x=self.pfl_left,
|
||||
y=self.pfl_top,
|
||||
w=self.sizes.PFL_WIDTH,
|
||||
h=self.sizes.PFL_FONT_PX,
|
||||
)
|
||||
|
||||
@property
|
||||
def pure(self):
|
||||
return crop_xywh(self.img, self.pure_rect)
|
||||
|
||||
@property
|
||||
def far_rect(self):
|
||||
return self.construct_int_xywh_rect(
|
||||
x=self.pfl_left,
|
||||
y=self.pfl_top + self.sizes.PFL_FONT_PX + self.sizes.PURE_FAR_GAP,
|
||||
w=self.sizes.PFL_WIDTH,
|
||||
h=self.sizes.PFL_FONT_PX,
|
||||
)
|
||||
|
||||
@property
|
||||
def far(self):
|
||||
return crop_xywh(self.img, self.far_rect)
|
||||
|
||||
@property
|
||||
def lost_rect(self):
|
||||
return self.construct_int_xywh_rect(
|
||||
x=self.pfl_left,
|
||||
y=(
|
||||
self.pfl_top
|
||||
+ self.sizes.PFL_FONT_PX * 2
|
||||
+ self.sizes.PURE_FAR_GAP
|
||||
+ self.sizes.FAR_LOST_GAP
|
||||
),
|
||||
w=self.sizes.PFL_WIDTH,
|
||||
h=self.sizes.PFL_FONT_PX,
|
||||
)
|
||||
|
||||
@property
|
||||
def lost(self):
|
||||
return crop_xywh(self.img, self.lost_rect)
|
||||
|
||||
@property
|
||||
def score_rect(self):
|
||||
return self.construct_int_xywh_rect(
|
||||
x=self.hmid - (self.sizes.SCORE_WIDTH / 2),
|
||||
y=(
|
||||
self.h_without_top_bar_mid
|
||||
+ self.sizes.SCORE_BOTTOM_FROM_VMID
|
||||
- self.sizes.SCORE_FONT_PX
|
||||
),
|
||||
w=self.sizes.SCORE_WIDTH,
|
||||
h=self.sizes.SCORE_FONT_PX,
|
||||
)
|
||||
|
||||
@property
|
||||
def score(self):
|
||||
return crop_xywh(self.img, self.score_rect)
|
||||
|
||||
@property
|
||||
def max_recall_rating_class_rect(self):
|
||||
x = (
|
||||
self.hmid
|
||||
+ self.sizes.JACKET_RIGHT_FROM_HOR_MID
|
||||
- self.sizes.JACKET_WIDTH
|
||||
- 25 * self.sizes.factor
|
||||
)
|
||||
return self.construct_int_xywh_rect(
|
||||
x=x,
|
||||
y=(
|
||||
self.h_without_top_bar_mid
|
||||
- self.sizes.SCORE_PANEL[1] / 2
|
||||
- self.sizes.MR_RT_HEIGHT
|
||||
),
|
||||
w=self.sizes.MR_RT_WIDTH,
|
||||
h=self.sizes.MR_RT_HEIGHT,
|
||||
)
|
||||
|
||||
@property
|
||||
def max_recall_rating_class(self):
|
||||
return crop_xywh(self.img, self.max_recall_rating_class_rect)
|
||||
|
||||
@property
|
||||
def title_rect(self):
|
||||
return self.construct_int_xywh_rect(
|
||||
x=0,
|
||||
y=self.h_without_top_bar_mid
|
||||
+ self.sizes.TITLE_BOTTOM_FROM_VMID
|
||||
- self.sizes.TITLE_FONT_PX,
|
||||
w=self.hmid + self.sizes.TITLE_WIDTH_RIGHT,
|
||||
h=self.sizes.TITLE_FONT_PX,
|
||||
)
|
||||
|
||||
@property
|
||||
def title(self):
|
||||
return crop_xywh(self.img, self.title_rect)
|
||||
|
||||
@property
|
||||
def jacket_rect(self):
|
||||
return self.construct_int_xywh_rect(
|
||||
x=self.hmid
|
||||
+ self.sizes.JACKET_RIGHT_FROM_HOR_MID
|
||||
- self.sizes.JACKET_WIDTH,
|
||||
y=self.h_without_top_bar_mid - self.sizes.SCORE_PANEL[1] / 2,
|
||||
w=self.sizes.JACKET_WIDTH,
|
||||
h=self.sizes.JACKET_WIDTH,
|
||||
)
|
||||
|
||||
@property
|
||||
def jacket(self):
|
||||
return crop_xywh(self.img, self.jacket_rect)
|
||||
|
||||
|
||||
class DeviceV2AutoRois(DeviceV2Rois):
|
||||
@staticmethod
|
||||
def get_factor(width: int, height: int):
|
||||
ratio = width / height
|
||||
return ((width / 16) * 9) / 720 if ratio < (16 / 9) else height / 720
|
||||
|
||||
def __init__(self, img: Mat):
|
||||
factor = self.get_factor(img.shape[1], img.shape[0])
|
||||
self.sizes = SizesV1(factor)
|
||||
self.__img = None
|
||||
self.img = img
|
||||
|
||||
@property
|
||||
def img(self):
|
||||
return self.__img
|
||||
|
||||
@img.setter
|
||||
def img(self, img: Mat):
|
||||
self.__img = crop_black_edges(img)
|
@ -1,9 +0,0 @@
|
||||
from cv2 import MORPH_RECT, getStructuringElement
|
||||
|
||||
PFL_DENOISE_KERNEL = getStructuringElement(MORPH_RECT, [2, 2])
|
||||
PFL_ERODE_KERNEL = getStructuringElement(MORPH_RECT, [3, 3])
|
||||
PFL_CLOSE_HORIZONTAL_KERNEL = getStructuringElement(MORPH_RECT, [10, 1])
|
||||
|
||||
MAX_RECALL_DENOISE_KERNEL = getStructuringElement(MORPH_RECT, [3, 3])
|
||||
MAX_RECALL_ERODE_KERNEL = getStructuringElement(MORPH_RECT, [2, 2])
|
||||
MAX_RECALL_CLOSE_KERNEL = getStructuringElement(MORPH_RECT, [20, 1])
|
@ -1,95 +0,0 @@
|
||||
import cv2
|
||||
import numpy as np
|
||||
|
||||
from .types import Mat
|
||||
|
||||
__all__ = [
|
||||
"GRAY_MIN_HSV",
|
||||
"GRAY_MAX_HSV",
|
||||
"WHITE_MIN_HSV",
|
||||
"WHITE_MAX_HSV",
|
||||
"PST_MIN_HSV",
|
||||
"PST_MAX_HSV",
|
||||
"PRS_MIN_HSV",
|
||||
"PRS_MAX_HSV",
|
||||
"FTR_MIN_HSV",
|
||||
"FTR_MAX_HSV",
|
||||
"BYD_MIN_HSV",
|
||||
"BYD_MAX_HSV",
|
||||
"mask_gray",
|
||||
"mask_white",
|
||||
"mask_pst",
|
||||
"mask_prs",
|
||||
"mask_ftr",
|
||||
"mask_byd",
|
||||
"mask_rating_class",
|
||||
]
|
||||
|
||||
GRAY_MIN_HSV = np.array([0, 0, 70], np.uint8)
|
||||
GRAY_MAX_HSV = np.array([0, 0, 200], np.uint8)
|
||||
|
||||
GRAY_MIN_BGR = np.array([50] * 3, np.uint8)
|
||||
GRAY_MAX_BGR = np.array([160] * 3, np.uint8)
|
||||
|
||||
WHITE_MIN_HSV = np.array([0, 0, 240], np.uint8)
|
||||
WHITE_MAX_HSV = np.array([179, 10, 255], np.uint8)
|
||||
|
||||
PST_MIN_HSV = np.array([100, 50, 80], np.uint8)
|
||||
PST_MAX_HSV = np.array([100, 255, 255], np.uint8)
|
||||
|
||||
PRS_MIN_HSV = np.array([43, 40, 75], np.uint8)
|
||||
PRS_MAX_HSV = np.array([50, 155, 190], np.uint8)
|
||||
|
||||
FTR_MIN_HSV = np.array([149, 30, 0], np.uint8)
|
||||
FTR_MAX_HSV = np.array([155, 181, 150], np.uint8)
|
||||
|
||||
BYD_MIN_HSV = np.array([170, 50, 50], np.uint8)
|
||||
BYD_MAX_HSV = np.array([179, 210, 198], np.uint8)
|
||||
|
||||
|
||||
def mask_gray(__img_bgr: Mat):
|
||||
# bgr_value_equal_mask = all(__img_bgr[:, 1:] == __img_bgr[:, :-1], axis=1)
|
||||
bgr_value_equal_mask = np.max(__img_bgr, axis=2) - np.min(__img_bgr, axis=2) <= 5
|
||||
img_bgr = __img_bgr.copy()
|
||||
img_bgr[~bgr_value_equal_mask] = np.array([0, 0, 0], __img_bgr.dtype)
|
||||
img_bgr = cv2.erode(img_bgr, cv2.getStructuringElement(cv2.MORPH_RECT, (2, 2)))
|
||||
img_bgr = cv2.dilate(img_bgr, cv2.getStructuringElement(cv2.MORPH_RECT, (1, 1)))
|
||||
return cv2.inRange(img_bgr, GRAY_MIN_BGR, GRAY_MAX_BGR)
|
||||
|
||||
|
||||
def mask_white(img_hsv: Mat):
|
||||
mask = cv2.inRange(img_hsv, WHITE_MIN_HSV, WHITE_MAX_HSV)
|
||||
mask = cv2.dilate(mask, cv2.getStructuringElement(cv2.MORPH_RECT, (2, 2)))
|
||||
return mask
|
||||
|
||||
|
||||
def mask_pst(img_hsv: Mat):
|
||||
mask = cv2.inRange(img_hsv, PST_MIN_HSV, PST_MAX_HSV)
|
||||
mask = cv2.dilate(mask, (1, 1))
|
||||
return mask
|
||||
|
||||
|
||||
def mask_prs(img_hsv: Mat):
|
||||
mask = cv2.inRange(img_hsv, PRS_MIN_HSV, PRS_MAX_HSV)
|
||||
mask = cv2.dilate(mask, (1, 1))
|
||||
return mask
|
||||
|
||||
|
||||
def mask_ftr(img_hsv: Mat):
|
||||
mask = cv2.inRange(img_hsv, FTR_MIN_HSV, FTR_MAX_HSV)
|
||||
mask = cv2.dilate(mask, (1, 1))
|
||||
return mask
|
||||
|
||||
|
||||
def mask_byd(img_hsv: Mat):
|
||||
mask = cv2.inRange(img_hsv, BYD_MIN_HSV, BYD_MAX_HSV)
|
||||
mask = cv2.dilate(mask, (2, 2))
|
||||
return mask
|
||||
|
||||
|
||||
def mask_rating_class(img_hsv: Mat):
|
||||
pst = mask_pst(img_hsv)
|
||||
prs = mask_prs(img_hsv)
|
||||
ftr = mask_ftr(img_hsv)
|
||||
byd = mask_byd(img_hsv)
|
||||
return cv2.bitwise_or(byd, cv2.bitwise_or(ftr, cv2.bitwise_or(pst, prs)))
|
@ -1,14 +1,11 @@
|
||||
import math
|
||||
from copy import deepcopy
|
||||
from typing import Optional, Sequence, Tuple
|
||||
|
||||
import cv2
|
||||
import numpy as np
|
||||
from numpy.linalg import norm
|
||||
|
||||
from .crop import crop_xywh
|
||||
from .mask import mask_byd, mask_ftr, mask_prs, mask_pst
|
||||
from .types import Mat, cv2_ml_KNearest
|
||||
from .types import Mat
|
||||
|
||||
__all__ = [
|
||||
"FixRects",
|
||||
@ -39,7 +36,7 @@ class FixRects:
|
||||
if rect in consumed_rects:
|
||||
continue
|
||||
|
||||
x, y, w, h = rect
|
||||
x, _, w, h = rect
|
||||
# grab those small rects
|
||||
if not img_height * 0.1 <= h <= img_height * 0.6:
|
||||
continue
|
||||
@ -49,7 +46,7 @@ class FixRects:
|
||||
for other_rect in rects:
|
||||
if rect == other_rect:
|
||||
continue
|
||||
ox, oy, ow, oh = other_rect
|
||||
ox, _, ow, _ = other_rect
|
||||
if abs(x - ox) < tolerance and abs((x + w) - (ox + ow)) < tolerance:
|
||||
group.append(other_rect)
|
||||
|
||||
@ -65,8 +62,7 @@ class FixRects:
|
||||
new_h = new_bottom - new_y
|
||||
new_rects.append((new_x, new_y, new_w, new_h))
|
||||
|
||||
return_rects = deepcopy(rects)
|
||||
return_rects = [r for r in return_rects if r not in consumed_rects]
|
||||
return_rects = [r for r in rects if r not in consumed_rects]
|
||||
return_rects.extend(new_rects)
|
||||
return return_rects
|
||||
|
||||
@ -81,42 +77,42 @@ class FixRects:
|
||||
new_rects = []
|
||||
for rect in rects:
|
||||
rx, ry, rw, rh = rect
|
||||
if rw / rh > rect_wh_ratio:
|
||||
# consider this is a connected contour
|
||||
connected_rects.append(rect)
|
||||
if rw / rh <= rect_wh_ratio:
|
||||
continue
|
||||
|
||||
# find the thinnest part
|
||||
border_ignore = round(rw * width_range_ratio)
|
||||
img_cropped = crop_xywh(
|
||||
img_masked,
|
||||
(border_ignore, ry, rw - border_ignore, rh),
|
||||
)
|
||||
white_pixels = {} # dict[x, white_pixel_number]
|
||||
for i in range(img_cropped.shape[1]):
|
||||
col = img_cropped[:, i]
|
||||
white_pixels[rx + border_ignore + i] = np.count_nonzero(col > 200)
|
||||
least_white_pixels = min(v for v in white_pixels.values() if v > 0)
|
||||
x_values = [
|
||||
x
|
||||
for x, pixel in white_pixels.items()
|
||||
if pixel == least_white_pixels
|
||||
]
|
||||
# select only middle values
|
||||
x_mean = np.mean(x_values)
|
||||
x_std = np.std(x_values)
|
||||
x_values = [
|
||||
x
|
||||
for x in x_values
|
||||
if x_mean - x_std * 1.5 <= x <= x_mean + x_std * 1.5
|
||||
]
|
||||
x_mid = round(np.median(x_values))
|
||||
connected_rects.append(rect)
|
||||
|
||||
# split the rect
|
||||
new_rects.extend(
|
||||
[(rx, ry, x_mid - rx, rh), (x_mid, ry, rx + rw - x_mid, rh)]
|
||||
)
|
||||
# find the thinnest part
|
||||
border_ignore = round(rw * width_range_ratio)
|
||||
img_cropped = crop_xywh(
|
||||
img_masked,
|
||||
(border_ignore, ry, rw - border_ignore, rh),
|
||||
)
|
||||
white_pixels = {} # dict[x, white_pixel_number]
|
||||
for i in range(img_cropped.shape[1]):
|
||||
col = img_cropped[:, i]
|
||||
white_pixels[rx + border_ignore + i] = np.count_nonzero(col > 200)
|
||||
|
||||
if all(v == 0 for v in white_pixels.values()):
|
||||
return rects
|
||||
|
||||
least_white_pixels = min(v for v in white_pixels.values() if v > 0)
|
||||
x_values = [
|
||||
x for x, pixel in white_pixels.items() if pixel == least_white_pixels
|
||||
]
|
||||
# select only middle values
|
||||
x_mean = np.mean(x_values)
|
||||
x_std = np.std(x_values)
|
||||
x_values = [
|
||||
x for x in x_values if x_mean - x_std * 1.5 <= x <= x_mean + x_std * 1.5
|
||||
]
|
||||
x_mid = round(np.median(x_values))
|
||||
|
||||
# split the rect
|
||||
new_rects.extend(
|
||||
[(rx, ry, x_mid - rx, rh), (x_mid, ry, rx + rw - x_mid, rh)]
|
||||
)
|
||||
|
||||
return_rects = deepcopy(rects)
|
||||
return_rects = [r for r in rects if r not in connected_rects]
|
||||
return_rects.extend(new_rects)
|
||||
return return_rects
|
||||
@ -145,33 +141,16 @@ def resize_fill_square(img: Mat, target: int = 20):
|
||||
|
||||
|
||||
def preprocess_hog(digit_rois):
|
||||
# https://github.com/opencv/opencv/blob/f834736307c8328340aea48908484052170c9224/samples/python/digits.py
|
||||
# https://learnopencv.com/handwritten-digits-classification-an-opencv-c-python-tutorial/
|
||||
samples = []
|
||||
for digit in digit_rois:
|
||||
gx = cv2.Sobel(digit, cv2.CV_32F, 1, 0)
|
||||
gy = cv2.Sobel(digit, cv2.CV_32F, 0, 1)
|
||||
mag, ang = cv2.cartToPolar(gx, gy)
|
||||
bin_n = 16
|
||||
_bin = np.int32(bin_n * ang / (2 * np.pi))
|
||||
bin_cells = _bin[:10, :10], _bin[10:, :10], _bin[:10, 10:], _bin[10:, 10:]
|
||||
mag_cells = mag[:10, :10], mag[10:, :10], mag[:10, 10:], mag[10:, 10:]
|
||||
hists = [
|
||||
np.bincount(b.ravel(), m.ravel(), bin_n)
|
||||
for b, m in zip(bin_cells, mag_cells)
|
||||
]
|
||||
hist = np.hstack(hists)
|
||||
|
||||
# transform to Hellinger kernel
|
||||
eps = 1e-7
|
||||
hist /= hist.sum() + eps
|
||||
hist = np.sqrt(hist)
|
||||
hist /= norm(hist) + eps
|
||||
|
||||
hog = cv2.HOGDescriptor((20, 20), (10, 10), (5, 5), (10, 10), 9)
|
||||
hist = hog.compute(digit)
|
||||
samples.append(hist)
|
||||
return np.float32(samples)
|
||||
|
||||
|
||||
def ocr_digit_samples_knn(__samples, knn_model: cv2_ml_KNearest, k: int = 4):
|
||||
def ocr_digit_samples_knn(__samples, knn_model: cv2.ml.KNearest, k: int = 4):
|
||||
_, results, _, _ = knn_model.findNearest(__samples, k)
|
||||
result_list = [int(r) for r in results.ravel()]
|
||||
result_str = "".join(str(r) for r in result_list if r > -1)
|
||||
@ -192,20 +171,10 @@ def ocr_digits_by_contour_get_samples(__roi_gray: Mat, size: int):
|
||||
|
||||
def ocr_digits_by_contour_knn(
|
||||
__roi_gray: Mat,
|
||||
knn_model: cv2_ml_KNearest,
|
||||
knn_model: cv2.ml.KNearest,
|
||||
*,
|
||||
k=4,
|
||||
size: int = 20,
|
||||
) -> int:
|
||||
samples = ocr_digits_by_contour_get_samples(__roi_gray, size)
|
||||
return ocr_digit_samples_knn(samples, knn_model, k)
|
||||
|
||||
|
||||
def ocr_rating_class(roi_hsv: Mat):
|
||||
mask_results = [
|
||||
mask_pst(roi_hsv),
|
||||
mask_prs(roi_hsv),
|
||||
mask_ftr(roi_hsv),
|
||||
mask_byd(roi_hsv),
|
||||
]
|
||||
return max(enumerate(mask_results), key=lambda e: np.count_nonzero(e[1]))[0]
|
||||
|
119
src/arcaea_offline_ocr/phash_db.py
Normal file
119
src/arcaea_offline_ocr/phash_db.py
Normal file
@ -0,0 +1,119 @@
|
||||
import sqlite3
|
||||
from typing import List, Union
|
||||
|
||||
import cv2
|
||||
import numpy as np
|
||||
|
||||
from .types import Mat
|
||||
|
||||
|
||||
def phash_opencv(img_gray, hash_size=8, highfreq_factor=4):
|
||||
# type: (Union[Mat, np.ndarray], int, int) -> np.ndarray
|
||||
"""
|
||||
Perceptual Hash computation.
|
||||
|
||||
Implementation follows
|
||||
http://www.hackerfactor.com/blog/index.php?/archives/432-Looks-Like-It.html
|
||||
|
||||
Adapted from `imagehash.phash`, pure opencv implementation
|
||||
|
||||
The result is slightly different from `imagehash.phash`.
|
||||
"""
|
||||
if hash_size < 2:
|
||||
raise ValueError("Hash size must be greater than or equal to 2")
|
||||
|
||||
img_size = hash_size * highfreq_factor
|
||||
image = cv2.resize(img_gray, (img_size, img_size), interpolation=cv2.INTER_LANCZOS4)
|
||||
image = np.float32(image)
|
||||
dct = cv2.dct(image)
|
||||
dctlowfreq = dct[:hash_size, :hash_size]
|
||||
med = np.median(dctlowfreq)
|
||||
diff = dctlowfreq > med
|
||||
return diff
|
||||
|
||||
|
||||
def hamming_distance_sql_function(user_input, db_entry) -> int:
|
||||
return np.count_nonzero(
|
||||
np.frombuffer(user_input, bool) ^ np.frombuffer(db_entry, bool)
|
||||
)
|
||||
|
||||
|
||||
class ImagePhashDatabase:
|
||||
def __init__(self, db_path: str):
|
||||
with sqlite3.connect(db_path) as conn:
|
||||
self.hash_size = int(
|
||||
conn.execute(
|
||||
"SELECT value FROM properties WHERE key = 'hash_size'"
|
||||
).fetchone()[0]
|
||||
)
|
||||
self.highfreq_factor = int(
|
||||
conn.execute(
|
||||
"SELECT value FROM properties WHERE key = 'highfreq_factor'"
|
||||
).fetchone()[0]
|
||||
)
|
||||
self.built_timestamp = int(
|
||||
conn.execute(
|
||||
"SELECT value FROM properties WHERE key = 'built_timestamp'"
|
||||
).fetchone()[0]
|
||||
)
|
||||
|
||||
self.ids: List[str] = [
|
||||
i[0] for i in conn.execute("SELECT id FROM hashes").fetchall()
|
||||
]
|
||||
self.hashes_byte = [
|
||||
i[0] for i in conn.execute("SELECT hash FROM hashes").fetchall()
|
||||
]
|
||||
self.hashes = [np.frombuffer(hb, bool) for hb in self.hashes_byte]
|
||||
|
||||
self.jacket_ids: List[str] = []
|
||||
self.jacket_hashes = []
|
||||
self.partner_icon_ids: List[str] = []
|
||||
self.partner_icon_hashes = []
|
||||
|
||||
for _id, _hash in zip(self.ids, self.hashes):
|
||||
id_splitted = _id.split("||")
|
||||
if len(id_splitted) > 1 and id_splitted[0] == "partner_icon":
|
||||
self.partner_icon_ids.append(id_splitted[1])
|
||||
self.partner_icon_hashes.append(_hash)
|
||||
else:
|
||||
self.jacket_ids.append(_id)
|
||||
self.jacket_hashes.append(_hash)
|
||||
|
||||
def calculate_phash(self, img_gray: Mat):
|
||||
return phash_opencv(
|
||||
img_gray, hash_size=self.hash_size, highfreq_factor=self.highfreq_factor
|
||||
)
|
||||
|
||||
def lookup_hash(self, image_hash: np.ndarray, *, limit: int = 5):
|
||||
image_hash = image_hash.flatten()
|
||||
xor_results = [
|
||||
(id, np.count_nonzero(image_hash ^ h))
|
||||
for id, h in zip(self.ids, self.hashes)
|
||||
]
|
||||
return sorted(xor_results, key=lambda r: r[1])[:limit]
|
||||
|
||||
def lookup_image(self, img_gray: Mat):
|
||||
image_hash = self.calculate_phash(img_gray)
|
||||
return self.lookup_hash(image_hash)[0]
|
||||
|
||||
def lookup_jackets(self, img_gray: Mat, *, limit: int = 5):
|
||||
image_hash = self.calculate_phash(img_gray).flatten()
|
||||
xor_results = [
|
||||
(id, np.count_nonzero(image_hash ^ h))
|
||||
for id, h in zip(self.jacket_ids, self.jacket_hashes)
|
||||
]
|
||||
return sorted(xor_results, key=lambda r: r[1])[:limit]
|
||||
|
||||
def lookup_jacket(self, img_gray: Mat):
|
||||
return self.lookup_jackets(img_gray)[0]
|
||||
|
||||
def lookup_partner_icons(self, img_gray: Mat, *, limit: int = 5):
|
||||
image_hash = self.calculate_phash(img_gray).flatten()
|
||||
xor_results = [
|
||||
(id, np.count_nonzero(image_hash ^ h))
|
||||
for id, h in zip(self.partner_icon_ids, self.partner_icon_hashes)
|
||||
]
|
||||
return sorted(xor_results, key=lambda r: r[1])[:limit]
|
||||
|
||||
def lookup_partner_icon(self, img_gray: Mat):
|
||||
return self.lookup_partner_icons(img_gray)[0]
|
@ -1,110 +0,0 @@
|
||||
import io
|
||||
import sqlite3
|
||||
from gzip import GzipFile
|
||||
from typing import Tuple
|
||||
|
||||
import cv2
|
||||
import numpy as np
|
||||
|
||||
from .types import Mat
|
||||
|
||||
|
||||
class SIFTDatabase:
|
||||
def __init__(self, db_path: str, load: bool = True):
|
||||
self.__db_path = db_path
|
||||
self.__tags = []
|
||||
self.__descriptors = []
|
||||
self.__size = None
|
||||
|
||||
self.__sift = cv2.SIFT_create()
|
||||
self.__bf_matcher = cv2.BFMatcher()
|
||||
|
||||
if load:
|
||||
self.load_db()
|
||||
|
||||
@property
|
||||
def db_path(self):
|
||||
return self.__db_path
|
||||
|
||||
@db_path.setter
|
||||
def db_path(self, value):
|
||||
self.__db_path = value
|
||||
|
||||
@property
|
||||
def tags(self):
|
||||
return self.__tags
|
||||
|
||||
@property
|
||||
def descriptors(self):
|
||||
return self.__descriptors
|
||||
|
||||
@property
|
||||
def size(self):
|
||||
return self.__size
|
||||
|
||||
@size.setter
|
||||
def size(self, value: Tuple[int, int]):
|
||||
self.__size = value
|
||||
|
||||
@property
|
||||
def sift(self):
|
||||
return self.__sift
|
||||
|
||||
@property
|
||||
def bf_matcher(self):
|
||||
return self.__bf_matcher
|
||||
|
||||
def load_db(self):
|
||||
conn = sqlite3.connect(self.db_path)
|
||||
with conn:
|
||||
cursor = conn.cursor()
|
||||
|
||||
size_str = cursor.execute(
|
||||
"SELECT value FROM properties WHERE id = 'size'"
|
||||
).fetchone()[0]
|
||||
sizr_str_arr = size_str.split(", ")
|
||||
self.size = tuple(int(s) for s in sizr_str_arr)
|
||||
tag__descriptors_bytes = cursor.execute(
|
||||
"SELECT tag, descriptors FROM sift"
|
||||
).fetchall()
|
||||
|
||||
gzipped = int(
|
||||
cursor.execute(
|
||||
"SELECT value FROM properties WHERE id = 'gzip'"
|
||||
).fetchone()[0]
|
||||
)
|
||||
for tag, descriptor_bytes in tag__descriptors_bytes:
|
||||
buffer = io.BytesIO(descriptor_bytes)
|
||||
self.tags.append(tag)
|
||||
if gzipped == 0:
|
||||
self.descriptors.append(np.load(buffer))
|
||||
else:
|
||||
gzipped_buffer = GzipFile(None, "rb", fileobj=buffer)
|
||||
self.descriptors.append(np.load(gzipped_buffer))
|
||||
|
||||
def lookup_img(
|
||||
self,
|
||||
__img: Mat,
|
||||
*,
|
||||
sift=None,
|
||||
bf=None,
|
||||
) -> Tuple[str, float]:
|
||||
sift = sift or self.sift
|
||||
bf = bf or self.bf_matcher
|
||||
|
||||
img = __img.copy()
|
||||
if self.size is not None:
|
||||
img = cv2.resize(img, self.size)
|
||||
_, descriptors = sift.detectAndCompute(img, None)
|
||||
|
||||
good_results = []
|
||||
for des in self.descriptors:
|
||||
matches = bf.knnMatch(descriptors, des, k=2)
|
||||
good = sum(m.distance < 0.75 * n.distance for m, n in matches)
|
||||
good_results.append(good)
|
||||
best_match_index = max(enumerate(good_results), key=lambda i: i[1])[0]
|
||||
|
||||
return (
|
||||
self.tags[best_match_index],
|
||||
good_results[best_match_index] / len(descriptors),
|
||||
)
|
@ -1,10 +1,9 @@
|
||||
from collections.abc import Iterable
|
||||
from typing import Any, NamedTuple, Protocol, Tuple, Union
|
||||
from typing import NamedTuple, Tuple, Union
|
||||
|
||||
import numpy as np
|
||||
|
||||
# from pylance
|
||||
Mat = np.ndarray[int, np.dtype[np.generic]]
|
||||
Mat = np.ndarray
|
||||
|
||||
|
||||
class XYWHRect(NamedTuple):
|
||||
@ -24,19 +23,3 @@ class XYWHRect(NamedTuple):
|
||||
raise ValueError()
|
||||
|
||||
return self.__class__(*[a - b for a, b in zip(self, other)])
|
||||
|
||||
|
||||
class cv2_ml_StatModel(Protocol):
|
||||
def predict(self, samples: np.ndarray, results: np.ndarray, flags: int = 0):
|
||||
...
|
||||
|
||||
def train(self, samples: np.ndarray, layout: int, responses: np.ndarray):
|
||||
...
|
||||
|
||||
|
||||
class cv2_ml_KNearest(cv2_ml_StatModel, Protocol):
|
||||
def findNearest(
|
||||
self, samples: np.ndarray, k: int
|
||||
) -> Tuple[Any, np.ndarray, np.ndarray, np.ndarray]:
|
||||
"""cv.ml.KNearest.findNearest(samples, k[, results[, neighborResponses[, dist]]]) -> retval, results, neighborResponses, dist"""
|
||||
...
|
||||
|
@ -1,17 +1,15 @@
|
||||
import io
|
||||
from collections.abc import Iterable
|
||||
from typing import Callable, Tuple, TypeVar, Union, overload
|
||||
from typing import Callable, TypeVar, Union, overload
|
||||
|
||||
import cv2
|
||||
import numpy as np
|
||||
from PIL import Image, ImageCms
|
||||
|
||||
from .types import Mat, XYWHRect
|
||||
from .types import XYWHRect
|
||||
|
||||
__all__ = ["imread_unicode"]
|
||||
|
||||
|
||||
def imread_unicode(filepath: str, flags: int = cv2.IMREAD_UNCHANGED) -> Mat:
|
||||
def imread_unicode(filepath: str, flags: int = cv2.IMREAD_UNCHANGED):
|
||||
# https://stackoverflow.com/a/57872297/16484891
|
||||
# CC BY-SA 4.0
|
||||
return cv2.imdecode(np.fromfile(filepath, dtype=np.uint8), flags)
|
||||
@ -44,27 +42,5 @@ def apply_factor(item: T, factor: float) -> T:
|
||||
def apply_factor(item, factor: float):
|
||||
if isinstance(item, (int, float)):
|
||||
return item * factor
|
||||
elif isinstance(item, Iterable):
|
||||
if isinstance(item, Iterable):
|
||||
return item.__class__([i * factor for i in item])
|
||||
|
||||
|
||||
def convert_to_srgb(pil_img: Image.Image):
|
||||
"""
|
||||
Convert PIL image to sRGB color space (if possible)
|
||||
and save the converted file.
|
||||
|
||||
https://stackoverflow.com/a/65667797/16484891
|
||||
|
||||
CC BY-SA 4.0
|
||||
"""
|
||||
icc = pil_img.info.get("icc_profile", "")
|
||||
icc_conv = ""
|
||||
|
||||
if icc:
|
||||
io_handle = io.BytesIO(icc) # virtual file
|
||||
src_profile = ImageCms.ImageCmsProfile(io_handle)
|
||||
dst_profile = ImageCms.createProfile("sRGB")
|
||||
img_conv = ImageCms.profileToProfile(pil_img, src_profile, dst_profile)
|
||||
icc_conv = img_conv.info.get("icc_profile", "")
|
||||
|
||||
return img_conv if icc != icc_conv else pil_img
|
||||
|
Reference in New Issue
Block a user