mirror of
https://github.com/283375/arcaea-offline-ocr.git
synced 2025-07-01 04:16:27 +00:00
Compare commits
13 Commits
v0.0.97
...
b545c5b6bf
Author | SHA1 | Date | |
---|---|---|---|
b545c5b6bf
|
|||
212afa32db
|
|||
2264e90b8e
|
|||
619bff2ea4
|
|||
413188d86a
|
|||
cfe8de043c
|
|||
3f6c08b2ad
|
|||
854d5558cf
|
|||
df77421a34
|
|||
2241230a7a
|
|||
fb4b1fb9b8
|
|||
00cd32dfdc
|
|||
17f6c2bac7 |
48
.github/workflows/build-and-draft-release.yml
vendored
Normal file
48
.github/workflows/build-and-draft-release.yml
vendored
Normal file
@ -0,0 +1,48 @@
|
||||
name: "Build and draft a release"
|
||||
|
||||
on:
|
||||
workflow_dispatch:
|
||||
push:
|
||||
tags:
|
||||
- "v[0-9]+.[0-9]+.[0-9]+"
|
||||
|
||||
permissions:
|
||||
contents: write
|
||||
discussions: write
|
||||
|
||||
jobs:
|
||||
build-and-draft-release:
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- name: Checkout
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
fetch-depth: 0
|
||||
|
||||
- name: Set up Python environment
|
||||
uses: actions/setup-python@v5
|
||||
with:
|
||||
python-version: "3.x"
|
||||
|
||||
- name: Build package
|
||||
run: |
|
||||
pip install build
|
||||
python -m build
|
||||
|
||||
- name: Remove `v` in tag name
|
||||
uses: mad9000/actions-find-and-replace-string@5
|
||||
id: tagNameReplaced
|
||||
with:
|
||||
source: ${{ github.ref_name }}
|
||||
find: "v"
|
||||
replace: ""
|
||||
|
||||
- name: Draft a release
|
||||
uses: softprops/action-gh-release@v2
|
||||
with:
|
||||
discussion_category_name: New releases
|
||||
draft: true
|
||||
generate_release_notes: true
|
||||
files: |
|
||||
dist/arcaea_offline_ocr-${{ steps.tagNameReplaced.outputs.value }}*.whl
|
||||
dist/arcaea-offline-ocr-${{ steps.tagNameReplaced.outputs.value }}.tar.gz
|
@ -4,11 +4,10 @@ repos:
|
||||
hooks:
|
||||
- id: end-of-file-fixer
|
||||
- id: trailing-whitespace
|
||||
- repo: https://github.com/psf/black
|
||||
rev: 23.1.0
|
||||
|
||||
- repo: https://github.com/astral-sh/ruff-pre-commit
|
||||
rev: v0.11.13
|
||||
hooks:
|
||||
- id: black
|
||||
- repo: https://github.com/PyCQA/isort
|
||||
rev: 5.12.0
|
||||
hooks:
|
||||
- id: isort
|
||||
- id: ruff
|
||||
args: ["--fix"]
|
||||
- id: ruff-format
|
||||
|
@ -4,7 +4,7 @@ build-backend = "setuptools.build_meta"
|
||||
|
||||
[project]
|
||||
name = "arcaea-offline-ocr"
|
||||
version = "0.0.97"
|
||||
version = "0.0.99"
|
||||
authors = [{ name = "283375", email = "log_283375@163.com" }]
|
||||
description = "Extract your Arcaea play result from screenshot."
|
||||
readme = "README.md"
|
||||
@ -16,8 +16,8 @@ classifiers = [
|
||||
]
|
||||
|
||||
[project.urls]
|
||||
"Homepage" = "https://github.com/283375/arcaea-offline-ocr"
|
||||
"Bug Tracker" = "https://github.com/283375/arcaea-offline-ocr/issues"
|
||||
"Homepage" = "https://github.com/ArcaeaOffline/core-ocr"
|
||||
"Bug Tracker" = "https://github.com/ArcaeaOffline/core-ocr/issues"
|
||||
|
||||
[tool.isort]
|
||||
profile = "black"
|
||||
@ -25,3 +25,14 @@ src_paths = ["src/arcaea_offline_ocr"]
|
||||
|
||||
[tool.pyright]
|
||||
ignore = ["**/__debug*.*"]
|
||||
|
||||
[tool.pylint.main]
|
||||
# extension-pkg-allow-list = ["cv2"]
|
||||
generated-members = ["cv2.*"]
|
||||
|
||||
[tool.pylint.logging]
|
||||
disable = [
|
||||
"missing-module-docstring",
|
||||
"missing-class-docstring",
|
||||
"missing-function-docstring"
|
||||
]
|
||||
|
@ -1,3 +1,2 @@
|
||||
attrs==23.1.0
|
||||
numpy==1.26.1
|
||||
opencv-python==4.8.1.78
|
||||
numpy~=2.3
|
||||
opencv-python~=4.11
|
||||
|
@ -1,10 +1,9 @@
|
||||
from dataclasses import dataclass
|
||||
from datetime import datetime
|
||||
from typing import Optional, Union
|
||||
|
||||
import attrs
|
||||
from typing import Optional
|
||||
|
||||
|
||||
@attrs.define
|
||||
@dataclass
|
||||
class B30OcrResultItem:
|
||||
rating_class: int
|
||||
score: int
|
||||
|
0
src/arcaea_offline_ocr/core/__init__.py
Normal file
0
src/arcaea_offline_ocr/core/__init__.py
Normal file
3
src/arcaea_offline_ocr/core/hashers/__init__.py
Normal file
3
src/arcaea_offline_ocr/core/hashers/__init__.py
Normal file
@ -0,0 +1,3 @@
|
||||
from .index import average, dct, difference
|
||||
|
||||
__all__ = ["average", "dct", "difference"]
|
7
src/arcaea_offline_ocr/core/hashers/_common.py
Normal file
7
src/arcaea_offline_ocr/core/hashers/_common.py
Normal file
@ -0,0 +1,7 @@
|
||||
import cv2
|
||||
|
||||
from arcaea_offline_ocr.types import Mat
|
||||
|
||||
|
||||
def _resize_image(src: Mat, dsize: ...) -> Mat:
|
||||
return cv2.resize(src, dsize, fx=0, fy=0, interpolation=cv2.INTER_AREA)
|
35
src/arcaea_offline_ocr/core/hashers/index.py
Normal file
35
src/arcaea_offline_ocr/core/hashers/index.py
Normal file
@ -0,0 +1,35 @@
|
||||
import cv2
|
||||
import numpy as np
|
||||
|
||||
from arcaea_offline_ocr.types import Mat
|
||||
|
||||
from ._common import _resize_image
|
||||
|
||||
|
||||
def average(img_gray: Mat, hash_size: int) -> Mat:
|
||||
img_resized = _resize_image(img_gray, (hash_size, hash_size))
|
||||
diff = img_resized > img_resized.mean()
|
||||
return diff.flatten()
|
||||
|
||||
|
||||
def difference(img_gray: Mat, hash_size: int) -> Mat:
|
||||
img_size = (hash_size + 1, hash_size)
|
||||
img_resized = _resize_image(img_gray, img_size)
|
||||
|
||||
previous = img_resized[:, :-1]
|
||||
current = img_resized[:, 1:]
|
||||
diff = previous > current
|
||||
return diff.flatten()
|
||||
|
||||
|
||||
def dct(img_gray: Mat, hash_size: int = 16, high_freq_factor: int = 4) -> Mat:
|
||||
# TODO: consistency?
|
||||
img_size_base = hash_size * high_freq_factor
|
||||
img_size = (img_size_base, img_size_base)
|
||||
|
||||
img_resized = _resize_image(img_gray, img_size)
|
||||
img_resized = img_resized.astype(np.float32)
|
||||
dct_mat = cv2.dct(img_resized)
|
||||
|
||||
hash_mat = dct_mat[:hash_size, :hash_size]
|
||||
return hash_mat > hash_mat.mean()
|
18
src/arcaea_offline_ocr/dependencies/ihdb/__init__.py
Normal file
18
src/arcaea_offline_ocr/dependencies/ihdb/__init__.py
Normal file
@ -0,0 +1,18 @@
|
||||
from .builder import ImageHashesDatabaseBuilder
|
||||
from .index import ImageHashesDatabase, ImageHashesDatabasePropertyMissingError
|
||||
from .models import (
|
||||
ImageHashBuildTask,
|
||||
ImageHashHashType,
|
||||
ImageHashResult,
|
||||
ImageHashCategory,
|
||||
)
|
||||
|
||||
__all__ = [
|
||||
"ImageHashesDatabase",
|
||||
"ImageHashesDatabasePropertyMissingError",
|
||||
"ImageHashHashType",
|
||||
"ImageHashResult",
|
||||
"ImageHashCategory",
|
||||
"ImageHashesDatabaseBuilder",
|
||||
"ImageHashBuildTask",
|
||||
]
|
85
src/arcaea_offline_ocr/dependencies/ihdb/builder.py
Normal file
85
src/arcaea_offline_ocr/dependencies/ihdb/builder.py
Normal file
@ -0,0 +1,85 @@
|
||||
import logging
|
||||
from datetime import datetime, timezone
|
||||
from sqlite3 import Connection
|
||||
from typing import List
|
||||
|
||||
from arcaea_offline_ocr.core import hashers
|
||||
|
||||
from .index import ImageHashesDatabase
|
||||
from .models import ImageHash, ImageHashBuildTask, ImageHashHashType
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class ImageHashesDatabaseBuilder:
|
||||
@staticmethod
|
||||
def __insert_property(conn: Connection, key: str, value: str):
|
||||
return conn.execute(
|
||||
"INSERT INTO properties (key, value) VALUES (?, ?)",
|
||||
(key, value),
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def build(
|
||||
cls,
|
||||
conn: Connection,
|
||||
tasks: List[ImageHashBuildTask],
|
||||
*,
|
||||
hash_size: int = 16,
|
||||
high_freq_factor: int = 4,
|
||||
):
|
||||
rows: List[ImageHash] = []
|
||||
|
||||
for task in tasks:
|
||||
try:
|
||||
img_gray = task.imread_function(task.image_path)
|
||||
|
||||
for hash_type, hash_mat in [
|
||||
(
|
||||
ImageHashHashType.AVERAGE,
|
||||
hashers.average(img_gray, hash_size),
|
||||
),
|
||||
(
|
||||
ImageHashHashType.DCT,
|
||||
hashers.dct(img_gray, hash_size, high_freq_factor),
|
||||
),
|
||||
(
|
||||
ImageHashHashType.DIFFERENCE,
|
||||
hashers.difference(img_gray, hash_size),
|
||||
),
|
||||
]:
|
||||
rows.append(
|
||||
ImageHash(
|
||||
hash_type=hash_type,
|
||||
category=task.category,
|
||||
label=task.label,
|
||||
hash=ImageHashesDatabase.hash_mat_to_bytes(hash_mat),
|
||||
)
|
||||
)
|
||||
except Exception:
|
||||
logger.exception("Error processing task %r", task)
|
||||
|
||||
conn.execute("CREATE TABLE properties (`key` VARCHAR, `value` VARCHAR)")
|
||||
conn.execute(
|
||||
"CREATE TABLE hashes (`hash_type` INTEGER, `category` INTEGER, `label` VARCHAR, `hash` BLOB)"
|
||||
)
|
||||
|
||||
now = datetime.now(tz=timezone.utc)
|
||||
timestamp = int(now.timestamp() * 1000)
|
||||
|
||||
cls.__insert_property(conn, ImageHashesDatabase.KEY_HASH_SIZE, str(hash_size))
|
||||
cls.__insert_property(
|
||||
conn, ImageHashesDatabase.KEY_HIGH_FREQ_FACTOR, str(high_freq_factor)
|
||||
)
|
||||
cls.__insert_property(
|
||||
conn, ImageHashesDatabase.KEY_BUILT_TIMESTAMP, str(timestamp)
|
||||
)
|
||||
|
||||
conn.executemany(
|
||||
"INSERT INTO hashes (hash_type, category, label, hash) VALUES (?, ?, ?, ?)",
|
||||
[
|
||||
(row.hash_type.value, row.category.value, row.label, row.hash)
|
||||
for row in rows
|
||||
],
|
||||
)
|
||||
conn.commit()
|
144
src/arcaea_offline_ocr/dependencies/ihdb/index.py
Normal file
144
src/arcaea_offline_ocr/dependencies/ihdb/index.py
Normal file
@ -0,0 +1,144 @@
|
||||
import sqlite3
|
||||
from datetime import datetime, timezone
|
||||
from typing import Any, Callable, List, Optional, TypeVar
|
||||
|
||||
from arcaea_offline_ocr.core import hashers
|
||||
from arcaea_offline_ocr.types import Mat
|
||||
|
||||
from .models import ImageHashHashType, ImageHashResult, ImageHashCategory
|
||||
|
||||
T = TypeVar("T")
|
||||
|
||||
|
||||
def _sql_hamming_distance(hash1: bytes, hash2: bytes):
|
||||
assert len(hash1) == len(hash2), "hash size does not match!"
|
||||
count = sum(1 for byte1, byte2 in zip(hash1, hash2) if byte1 != byte2)
|
||||
return count
|
||||
|
||||
|
||||
class ImageHashesDatabasePropertyMissingError(Exception):
|
||||
pass
|
||||
|
||||
|
||||
class ImageHashesDatabase:
|
||||
KEY_HASH_SIZE = "hash_size"
|
||||
KEY_HIGH_FREQ_FACTOR = "high_freq_factor"
|
||||
KEY_BUILT_TIMESTAMP = "built_timestamp"
|
||||
|
||||
def __init__(self, conn: sqlite3.Connection):
|
||||
self.conn = conn
|
||||
self.conn.create_function("HAMMING_DISTANCE", 2, _sql_hamming_distance)
|
||||
|
||||
self._hash_size: int = -1
|
||||
self._high_freq_factor: int = -1
|
||||
self._built_time: Optional[datetime] = None
|
||||
|
||||
self._hashes_count = {
|
||||
ImageHashCategory.JACKET: 0,
|
||||
ImageHashCategory.PARTNER_ICON: 0,
|
||||
}
|
||||
|
||||
self._hash_length: int = -1
|
||||
|
||||
self._initialize()
|
||||
|
||||
@property
|
||||
def hash_size(self):
|
||||
return self._hash_size
|
||||
|
||||
@property
|
||||
def high_freq_factor(self):
|
||||
return self._high_freq_factor
|
||||
|
||||
@property
|
||||
def hash_length(self):
|
||||
return self._hash_length
|
||||
|
||||
def _initialize(self):
|
||||
def query_property(key, convert_func: Callable[[Any], T]) -> Optional[T]:
|
||||
result = self.conn.execute(
|
||||
"SELECT value FROM properties WHERE key = ?",
|
||||
(key,),
|
||||
).fetchone()
|
||||
return convert_func(result[0]) if result is not None else None
|
||||
|
||||
def set_hashes_count(category: ImageHashCategory):
|
||||
self._hashes_count[category] = self.conn.execute(
|
||||
"SELECT COUNT(DISTINCT label) FROM hashes WHERE category = ?",
|
||||
(category.value,),
|
||||
).fetchone()[0]
|
||||
|
||||
hash_size = query_property(self.KEY_HASH_SIZE, lambda x: int(x))
|
||||
if hash_size is None:
|
||||
raise ImageHashesDatabasePropertyMissingError("hash_size")
|
||||
self._hash_size = hash_size
|
||||
|
||||
high_freq_factor = query_property(self.KEY_HIGH_FREQ_FACTOR, lambda x: int(x))
|
||||
if high_freq_factor is None:
|
||||
raise ImageHashesDatabasePropertyMissingError("high_freq_factor")
|
||||
self._high_freq_factor = high_freq_factor
|
||||
|
||||
self._built_time = query_property(
|
||||
self.KEY_BUILT_TIMESTAMP,
|
||||
lambda ts: datetime.fromtimestamp(int(ts) / 1000, tz=timezone.utc),
|
||||
)
|
||||
|
||||
set_hashes_count(ImageHashCategory.JACKET)
|
||||
set_hashes_count(ImageHashCategory.PARTNER_ICON)
|
||||
|
||||
self._hash_length = self._hash_size**2
|
||||
|
||||
def lookup_hash(
|
||||
self, category: ImageHashCategory, hash_type: ImageHashHashType, hash: bytes
|
||||
) -> List[ImageHashResult]:
|
||||
cursor = self.conn.execute(
|
||||
"SELECT"
|
||||
" label,"
|
||||
" HAMMING_DISTANCE(hash, ?) AS distance"
|
||||
" FROM hashes"
|
||||
" WHERE category = ? AND hash_type = ?"
|
||||
" ORDER BY distance ASC LIMIT 10",
|
||||
(hash, category.value, hash_type.value),
|
||||
)
|
||||
|
||||
results = []
|
||||
for label, distance in cursor.fetchall():
|
||||
results.append(
|
||||
ImageHashResult(
|
||||
hash_type=hash_type,
|
||||
category=category,
|
||||
label=label,
|
||||
confidence=(self.hash_length - distance) / self.hash_length,
|
||||
)
|
||||
)
|
||||
|
||||
return results
|
||||
|
||||
@staticmethod
|
||||
def hash_mat_to_bytes(hash: Mat) -> bytes:
|
||||
return bytes([255 if b else 0 for b in hash.flatten()])
|
||||
|
||||
def identify_image(self, category: ImageHashCategory, img) -> List[ImageHashResult]:
|
||||
results = []
|
||||
|
||||
ahash = hashers.average(img, self.hash_size)
|
||||
dhash = hashers.difference(img, self.hash_size)
|
||||
phash = hashers.dct(img, self.hash_size, self.high_freq_factor)
|
||||
|
||||
results.extend(
|
||||
self.lookup_hash(
|
||||
category, ImageHashHashType.AVERAGE, self.hash_mat_to_bytes(ahash)
|
||||
)
|
||||
)
|
||||
results.extend(
|
||||
self.lookup_hash(
|
||||
category, ImageHashHashType.DIFFERENCE, self.hash_mat_to_bytes(dhash)
|
||||
)
|
||||
)
|
||||
results.extend(
|
||||
self.lookup_hash(
|
||||
category, ImageHashHashType.DCT, self.hash_mat_to_bytes(phash)
|
||||
)
|
||||
)
|
||||
|
||||
return results
|
46
src/arcaea_offline_ocr/dependencies/ihdb/models.py
Normal file
46
src/arcaea_offline_ocr/dependencies/ihdb/models.py
Normal file
@ -0,0 +1,46 @@
|
||||
import dataclasses
|
||||
from enum import IntEnum
|
||||
from typing import Callable
|
||||
|
||||
import cv2
|
||||
|
||||
from arcaea_offline_ocr.types import Mat
|
||||
|
||||
|
||||
class ImageHashHashType(IntEnum):
|
||||
AVERAGE = 0
|
||||
DIFFERENCE = 1
|
||||
DCT = 2
|
||||
|
||||
|
||||
class ImageHashCategory(IntEnum):
|
||||
JACKET = 0
|
||||
PARTNER_ICON = 1
|
||||
|
||||
|
||||
@dataclasses.dataclass
|
||||
class ImageHash:
|
||||
hash_type: ImageHashHashType
|
||||
category: ImageHashCategory
|
||||
label: str
|
||||
hash: bytes
|
||||
|
||||
|
||||
@dataclasses.dataclass
|
||||
class ImageHashResult:
|
||||
hash_type: ImageHashHashType
|
||||
category: ImageHashCategory
|
||||
label: str
|
||||
confidence: float
|
||||
|
||||
|
||||
def _default_imread_gray(image_path: str):
|
||||
return cv2.cvtColor(cv2.imread(image_path, cv2.IMREAD_COLOR), cv2.COLOR_BGR2GRAY)
|
||||
|
||||
|
||||
@dataclasses.dataclass
|
||||
class ImageHashBuildTask:
|
||||
image_path: str
|
||||
category: ImageHashCategory
|
||||
label: str
|
||||
imread_function: Callable[[str], Mat] = _default_imread_gray
|
@ -1,9 +1,8 @@
|
||||
from dataclasses import dataclass
|
||||
from typing import Optional
|
||||
|
||||
import attrs
|
||||
|
||||
|
||||
@attrs.define
|
||||
@dataclass
|
||||
class DeviceOcrResult:
|
||||
rating_class: int
|
||||
pure: int
|
||||
|
@ -67,8 +67,9 @@ class DeviceOcr:
|
||||
roi = self.masker.score(self.extractor.score)
|
||||
contours, _ = cv2.findContours(roi, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
|
||||
for contour in contours:
|
||||
x, y, w, h = cv2.boundingRect(contour)
|
||||
if h < roi.shape[0] * 0.6:
|
||||
if (
|
||||
cv2.boundingRect(contour)[3] < roi.shape[0] * 0.6
|
||||
): # h < score_component_h * 0.6
|
||||
roi = cv2.fillPoly(roi, [contour], [0])
|
||||
return ocr_digits_by_contour_knn(roi, self.knn_model)
|
||||
|
||||
@ -79,6 +80,7 @@ class DeviceOcr:
|
||||
self.masker.rating_class_prs(roi),
|
||||
self.masker.rating_class_ftr(roi),
|
||||
self.masker.rating_class_byd(roi),
|
||||
self.masker.rating_class_etr(roi),
|
||||
]
|
||||
return max(enumerate(results), key=lambda i: np.count_nonzero(i[1]))[0]
|
||||
|
||||
@ -108,7 +110,7 @@ class DeviceOcr:
|
||||
@staticmethod
|
||||
def preprocess_char_icon(img_gray: Mat):
|
||||
h, w = img_gray.shape[:2]
|
||||
img = cv2.copyMakeBorder(img_gray, w - h, 0, 0, 0, cv2.BORDER_REPLICATE)
|
||||
img = cv2.copyMakeBorder(img_gray, max(w - h, 0), 0, 0, 0, cv2.BORDER_REPLICATE)
|
||||
h, w = img.shape[:2]
|
||||
img = cv2.fillPoly(
|
||||
img,
|
||||
|
@ -6,6 +6,8 @@ from .common import DeviceRoisMasker
|
||||
|
||||
|
||||
class DeviceRoisMaskerAuto(DeviceRoisMasker):
|
||||
# pylint: disable=abstract-method
|
||||
|
||||
@staticmethod
|
||||
def mask_bgr_in_hsv(roi_bgr: Mat, hsv_lower: Mat, hsv_upper: Mat):
|
||||
return cv2.inRange(
|
||||
@ -32,6 +34,9 @@ class DeviceRoisMaskerAutoT1(DeviceRoisMaskerAuto):
|
||||
BYD_HSV_MIN = np.array([170, 50, 50], np.uint8)
|
||||
BYD_HSV_MAX = np.array([179, 210, 198], np.uint8)
|
||||
|
||||
ETR_HSV_MIN = np.array([130, 60, 80], np.uint8)
|
||||
ETR_HSV_MAX = np.array([140, 145, 180], np.uint8)
|
||||
|
||||
TRACK_LOST_HSV_MIN = np.array([170, 75, 90], np.uint8)
|
||||
TRACK_LOST_HSV_MAX = np.array([175, 170, 160], np.uint8)
|
||||
|
||||
@ -85,6 +90,10 @@ class DeviceRoisMaskerAutoT1(DeviceRoisMaskerAuto):
|
||||
def rating_class_byd(cls, roi_bgr: Mat) -> Mat:
|
||||
return cls.mask_bgr_in_hsv(roi_bgr, cls.BYD_HSV_MIN, cls.BYD_HSV_MAX)
|
||||
|
||||
@classmethod
|
||||
def rating_class_etr(cls, roi_bgr: Mat) -> Mat:
|
||||
return cls.mask_bgr_in_hsv(roi_bgr, cls.ETR_HSV_MIN, cls.ETR_HSV_MAX)
|
||||
|
||||
@classmethod
|
||||
def max_recall(cls, roi_bgr: Mat) -> Mat:
|
||||
return cls.gray(roi_bgr)
|
||||
@ -116,7 +125,7 @@ class DeviceRoisMaskerAutoT1(DeviceRoisMaskerAuto):
|
||||
|
||||
class DeviceRoisMaskerAutoT2(DeviceRoisMaskerAuto):
|
||||
PFL_HSV_MIN = np.array([0, 0, 248], np.uint8)
|
||||
PFL_HSV_MAX = np.array([179, 10, 255], np.uint8)
|
||||
PFL_HSV_MAX = np.array([179, 40, 255], np.uint8)
|
||||
|
||||
SCORE_HSV_MIN = np.array([0, 0, 180], np.uint8)
|
||||
SCORE_HSV_MAX = np.array([179, 255, 255], np.uint8)
|
||||
@ -133,6 +142,9 @@ class DeviceRoisMaskerAutoT2(DeviceRoisMaskerAuto):
|
||||
BYD_HSV_MIN = np.array([170, 50, 50], np.uint8)
|
||||
BYD_HSV_MAX = np.array([179, 210, 198], np.uint8)
|
||||
|
||||
ETR_HSV_MIN = np.array([130, 60, 80], np.uint8)
|
||||
ETR_HSV_MAX = np.array([140, 145, 180], np.uint8)
|
||||
|
||||
MAX_RECALL_HSV_MIN = np.array([125, 0, 0], np.uint8)
|
||||
MAX_RECALL_HSV_MAX = np.array([145, 100, 150], np.uint8)
|
||||
|
||||
@ -184,6 +196,10 @@ class DeviceRoisMaskerAutoT2(DeviceRoisMaskerAuto):
|
||||
def rating_class_byd(cls, roi_bgr: Mat) -> Mat:
|
||||
return cls.mask_bgr_in_hsv(roi_bgr, cls.BYD_HSV_MIN, cls.BYD_HSV_MAX)
|
||||
|
||||
@classmethod
|
||||
def rating_class_etr(cls, roi_bgr: Mat) -> Mat:
|
||||
return cls.mask_bgr_in_hsv(roi_bgr, cls.ETR_HSV_MIN, cls.ETR_HSV_MAX)
|
||||
|
||||
@classmethod
|
||||
def max_recall(cls, roi_bgr: Mat) -> Mat:
|
||||
return cls.mask_bgr_in_hsv(
|
||||
|
@ -34,6 +34,10 @@ class DeviceRoisMasker:
|
||||
def rating_class_byd(cls, roi_bgr: Mat) -> Mat:
|
||||
raise NotImplementedError()
|
||||
|
||||
@classmethod
|
||||
def rating_class_etr(cls, roi_bgr: Mat) -> Mat:
|
||||
raise NotImplementedError()
|
||||
|
||||
@classmethod
|
||||
def max_recall(cls, roi_bgr: Mat) -> Mat:
|
||||
raise NotImplementedError()
|
||||
|
@ -36,7 +36,7 @@ class FixRects:
|
||||
if rect in consumed_rects:
|
||||
continue
|
||||
|
||||
x, y, w, h = rect
|
||||
x, _, w, h = rect
|
||||
# grab those small rects
|
||||
if not img_height * 0.1 <= h <= img_height * 0.6:
|
||||
continue
|
||||
@ -46,7 +46,7 @@ class FixRects:
|
||||
for other_rect in rects:
|
||||
if rect == other_rect:
|
||||
continue
|
||||
ox, oy, ow, oh = other_rect
|
||||
ox, _, ow, _ = other_rect
|
||||
if abs(x - ox) < tolerance and abs((x + w) - (ox + ow)) < tolerance:
|
||||
group.append(other_rect)
|
||||
|
||||
|
@ -12,7 +12,8 @@ def phash_opencv(img_gray, hash_size=8, highfreq_factor=4):
|
||||
"""
|
||||
Perceptual Hash computation.
|
||||
|
||||
Implementation follows http://www.hackerfactor.com/blog/index.php?/archives/432-Looks-Like-It.html
|
||||
Implementation follows
|
||||
http://www.hackerfactor.com/blog/index.php?/archives/432-Looks-Like-It.html
|
||||
|
||||
Adapted from `imagehash.phash`, pure opencv implementation
|
||||
|
||||
@ -69,14 +70,14 @@ class ImagePhashDatabase:
|
||||
self.partner_icon_ids: List[str] = []
|
||||
self.partner_icon_hashes = []
|
||||
|
||||
for id, hash in zip(self.ids, self.hashes):
|
||||
id_splitted = id.split("||")
|
||||
for _id, _hash in zip(self.ids, self.hashes):
|
||||
id_splitted = _id.split("||")
|
||||
if len(id_splitted) > 1 and id_splitted[0] == "partner_icon":
|
||||
self.partner_icon_ids.append(id_splitted[1])
|
||||
self.partner_icon_hashes.append(hash)
|
||||
self.partner_icon_hashes.append(_hash)
|
||||
else:
|
||||
self.jacket_ids.append(id)
|
||||
self.jacket_hashes.append(hash)
|
||||
self.jacket_ids.append(_id)
|
||||
self.jacket_hashes.append(_hash)
|
||||
|
||||
def calculate_phash(self, img_gray: Mat):
|
||||
return phash_opencv(
|
||||
|
@ -42,5 +42,5 @@ def apply_factor(item: T, factor: float) -> T:
|
||||
def apply_factor(item, factor: float):
|
||||
if isinstance(item, (int, float)):
|
||||
return item * factor
|
||||
elif isinstance(item, Iterable):
|
||||
if isinstance(item, Iterable):
|
||||
return item.__class__([i * factor for i in item])
|
||||
|
Reference in New Issue
Block a user