mirror of
https://github.com/283375/arcaea-offline-ocr.git
synced 2025-07-01 12:26:27 +00:00
Compare commits
12 Commits
v0.0.98
...
2b18906935
Author | SHA1 | Date | |
---|---|---|---|
2b18906935
|
|||
abfd37dbef
|
|||
3ebb058cdf
|
|||
b545c5b6bf
|
|||
212afa32db
|
|||
2264e90b8e
|
|||
619bff2ea4
|
|||
413188d86a
|
|||
cfe8de043c
|
|||
3f6c08b2ad
|
|||
854d5558cf
|
|||
df77421a34
|
@ -4,11 +4,10 @@ repos:
|
||||
hooks:
|
||||
- id: end-of-file-fixer
|
||||
- id: trailing-whitespace
|
||||
- repo: https://github.com/psf/black
|
||||
rev: 23.1.0
|
||||
|
||||
- repo: https://github.com/astral-sh/ruff-pre-commit
|
||||
rev: v0.11.13
|
||||
hooks:
|
||||
- id: black
|
||||
- repo: https://github.com/PyCQA/isort
|
||||
rev: 5.12.0
|
||||
hooks:
|
||||
- id: isort
|
||||
- id: ruff
|
||||
args: ["--fix"]
|
||||
- id: ruff-format
|
||||
|
@ -4,7 +4,7 @@ build-backend = "setuptools.build_meta"
|
||||
|
||||
[project]
|
||||
name = "arcaea-offline-ocr"
|
||||
version = "0.0.98"
|
||||
version = "0.0.99"
|
||||
authors = [{ name = "283375", email = "log_283375@163.com" }]
|
||||
description = "Extract your Arcaea play result from screenshot."
|
||||
readme = "README.md"
|
||||
|
@ -1,3 +1,2 @@
|
||||
attrs==23.1.0
|
||||
numpy==1.26.1
|
||||
opencv-python==4.8.1.78
|
||||
numpy~=2.3
|
||||
opencv-python~=4.11
|
||||
|
@ -1,4 +1,3 @@
|
||||
from .crop import *
|
||||
from .device import *
|
||||
from .ocr import *
|
||||
from .utils import *
|
||||
|
@ -1,52 +1,42 @@
|
||||
from math import floor
|
||||
from typing import List, Optional, Tuple
|
||||
|
||||
import cv2
|
||||
import numpy as np
|
||||
|
||||
from ....crop import crop_xywh
|
||||
from ....ocr import (
|
||||
FixRects,
|
||||
ocr_digits_by_contour_knn,
|
||||
preprocess_hog,
|
||||
resize_fill_square,
|
||||
)
|
||||
from ....phash_db import ImagePhashDatabase
|
||||
from ....types import Mat
|
||||
from ....utils import construct_int_xywh_rect
|
||||
from ...shared import B30OcrResultItem
|
||||
from .colors import *
|
||||
from .colors import (
|
||||
BYD_MAX_HSV,
|
||||
BYD_MIN_HSV,
|
||||
FAR_BG_MAX_HSV,
|
||||
FAR_BG_MIN_HSV,
|
||||
FTR_MAX_HSV,
|
||||
FTR_MIN_HSV,
|
||||
LOST_BG_MAX_HSV,
|
||||
LOST_BG_MIN_HSV,
|
||||
PRS_MAX_HSV,
|
||||
PRS_MIN_HSV,
|
||||
PURE_BG_MAX_HSV,
|
||||
PURE_BG_MIN_HSV,
|
||||
)
|
||||
from .rois import ChieriBotV4Rois
|
||||
from ....providers.knn import OcrKNearestTextProvider
|
||||
|
||||
|
||||
class ChieriBotV4Ocr:
|
||||
def __init__(
|
||||
self,
|
||||
score_knn: cv2.ml.KNearest,
|
||||
pfl_knn: cv2.ml.KNearest,
|
||||
score_knn_provider: OcrKNearestTextProvider,
|
||||
pfl_knn_provider: OcrKNearestTextProvider,
|
||||
phash_db: ImagePhashDatabase,
|
||||
factor: Optional[float] = 1.0,
|
||||
factor: float = 1.0,
|
||||
):
|
||||
self.__score_knn = score_knn
|
||||
self.__pfl_knn = pfl_knn
|
||||
self.__phash_db = phash_db
|
||||
self.__rois = ChieriBotV4Rois(factor)
|
||||
|
||||
@property
|
||||
def score_knn(self):
|
||||
return self.__score_knn
|
||||
|
||||
@score_knn.setter
|
||||
def score_knn(self, knn_digits_model: cv2.ml.KNearest):
|
||||
self.__score_knn = knn_digits_model
|
||||
|
||||
@property
|
||||
def pfl_knn(self):
|
||||
return self.__pfl_knn
|
||||
|
||||
@pfl_knn.setter
|
||||
def pfl_knn(self, knn_digits_model: cv2.ml.KNearest):
|
||||
self.__pfl_knn = knn_digits_model
|
||||
self.pfl_knn_provider = pfl_knn_provider
|
||||
self.score_knn_provider = score_knn_provider
|
||||
|
||||
@property
|
||||
def phash_db(self):
|
||||
@ -72,9 +62,8 @@ class ChieriBotV4Ocr:
|
||||
self.factor = img.shape[0] / 4400
|
||||
|
||||
def ocr_component_rating_class(self, component_bgr: Mat) -> int:
|
||||
rating_class_rect = construct_int_xywh_rect(
|
||||
self.rois.component_rois.rating_class_rect
|
||||
)
|
||||
rating_class_rect = self.rois.component_rois.rating_class_rect.rounded()
|
||||
|
||||
rating_class_roi = crop_xywh(component_bgr, rating_class_rect)
|
||||
rating_class_roi = cv2.cvtColor(rating_class_roi, cv2.COLOR_BGR2HSV)
|
||||
rating_class_masks = [
|
||||
@ -89,9 +78,7 @@ class ChieriBotV4Ocr:
|
||||
return max(enumerate(rating_class_results), key=lambda i: i[1])[0] + 1
|
||||
|
||||
def ocr_component_song_id(self, component_bgr: Mat):
|
||||
jacket_rect = construct_int_xywh_rect(
|
||||
self.rois.component_rois.jacket_rect, floor
|
||||
)
|
||||
jacket_rect = self.rois.component_rois.jacket_rect.floored()
|
||||
jacket_roi = cv2.cvtColor(
|
||||
crop_xywh(component_bgr, jacket_rect), cv2.COLOR_BGR2GRAY
|
||||
)
|
||||
@ -99,7 +86,7 @@ class ChieriBotV4Ocr:
|
||||
|
||||
def ocr_component_score_knn(self, component_bgr: Mat) -> int:
|
||||
# sourcery skip: inline-immediately-returned-variable
|
||||
score_rect = construct_int_xywh_rect(self.rois.component_rois.score_rect)
|
||||
score_rect = self.rois.component_rois.score_rect.rounded()
|
||||
score_roi = cv2.cvtColor(
|
||||
crop_xywh(component_bgr, score_rect), cv2.COLOR_BGR2GRAY
|
||||
)
|
||||
@ -117,9 +104,13 @@ class ChieriBotV4Ocr:
|
||||
if rect[3] > score_roi.shape[0] * 0.5:
|
||||
continue
|
||||
score_roi = cv2.fillPoly(score_roi, [contour], 0)
|
||||
return ocr_digits_by_contour_knn(score_roi, self.score_knn)
|
||||
|
||||
def find_pfl_rects(self, component_pfl_processed: Mat) -> List[List[int]]:
|
||||
ocr_result = self.score_knn_provider.result(score_roi)
|
||||
return int(ocr_result) if ocr_result else 0
|
||||
|
||||
def find_pfl_rects(
|
||||
self, component_pfl_processed: Mat
|
||||
) -> List[Tuple[int, int, int, int]]:
|
||||
# sourcery skip: inline-immediately-returned-variable
|
||||
pfl_roi_find = cv2.morphologyEx(
|
||||
component_pfl_processed,
|
||||
@ -146,7 +137,7 @@ class ChieriBotV4Ocr:
|
||||
return pfl_rects_adjusted
|
||||
|
||||
def preprocess_component_pfl(self, component_bgr: Mat) -> Mat:
|
||||
pfl_rect = construct_int_xywh_rect(self.rois.component_rois.pfl_rect)
|
||||
pfl_rect = self.rois.component_rois.pfl_rect.rounded()
|
||||
pfl_roi = crop_xywh(component_bgr, pfl_rect)
|
||||
pfl_roi_hsv = cv2.cvtColor(pfl_roi, cv2.COLOR_BGR2HSV)
|
||||
|
||||
@ -193,25 +184,9 @@ class ChieriBotV4Ocr:
|
||||
pure_far_lost = []
|
||||
for pfl_roi_rect in pfl_rects:
|
||||
roi = crop_xywh(pfl_roi, pfl_roi_rect)
|
||||
digit_contours, _ = cv2.findContours(
|
||||
roi, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE
|
||||
)
|
||||
digit_rects = [cv2.boundingRect(c) for c in digit_contours]
|
||||
digit_rects = FixRects.connect_broken(
|
||||
digit_rects, roi.shape[1], roi.shape[0]
|
||||
)
|
||||
digit_rects = FixRects.split_connected(roi, digit_rects)
|
||||
digit_rects = sorted(digit_rects, key=lambda r: r[0])
|
||||
digits = []
|
||||
for digit_rect in digit_rects:
|
||||
digit = crop_xywh(roi, digit_rect)
|
||||
digit = resize_fill_square(digit, 20)
|
||||
digits.append(digit)
|
||||
samples = preprocess_hog(digits)
|
||||
result = self.pfl_knn_provider.result(roi)
|
||||
pure_far_lost.append(int(result) if result else None)
|
||||
|
||||
_, results, _, _ = self.pfl_knn.findNearest(samples, 4)
|
||||
results = [str(int(i)) for i in results.ravel()]
|
||||
pure_far_lost.append(int("".join(results)))
|
||||
return tuple(pure_far_lost)
|
||||
except Exception:
|
||||
return (None, None, None)
|
||||
|
@ -1,12 +1,12 @@
|
||||
from typing import List, Optional
|
||||
from typing import List
|
||||
|
||||
from ....crop import crop_xywh
|
||||
from ....types import Mat, XYWHRect
|
||||
from ....utils import apply_factor, construct_int_xywh_rect
|
||||
from ....utils import apply_factor
|
||||
|
||||
|
||||
class ChieriBotV4ComponentRois:
|
||||
def __init__(self, factor: Optional[float] = 1.0):
|
||||
def __init__(self, factor: float = 1.0):
|
||||
self.__factor = factor
|
||||
|
||||
@property
|
||||
@ -19,11 +19,11 @@ class ChieriBotV4ComponentRois:
|
||||
|
||||
@property
|
||||
def top_font_color_detect(self):
|
||||
return apply_factor((35, 10, 120, 100), self.factor)
|
||||
return apply_factor(XYWHRect(35, 10, 120, 100), self.factor)
|
||||
|
||||
@property
|
||||
def bottom_font_color_detect(self):
|
||||
return apply_factor((30, 125, 175, 110), self.factor)
|
||||
return apply_factor(XYWHRect(30, 125, 175, 110), self.factor)
|
||||
|
||||
@property
|
||||
def bg_point(self):
|
||||
@ -31,31 +31,31 @@ class ChieriBotV4ComponentRois:
|
||||
|
||||
@property
|
||||
def rating_class_rect(self):
|
||||
return apply_factor((21, 40, 7, 20), self.factor)
|
||||
return apply_factor(XYWHRect(21, 40, 7, 20), self.factor)
|
||||
|
||||
@property
|
||||
def title_rect(self):
|
||||
return apply_factor((35, 10, 430, 50), self.factor)
|
||||
return apply_factor(XYWHRect(35, 10, 430, 50), self.factor)
|
||||
|
||||
@property
|
||||
def jacket_rect(self):
|
||||
return apply_factor((263, 0, 239, 239), self.factor)
|
||||
return apply_factor(XYWHRect(263, 0, 239, 239), self.factor)
|
||||
|
||||
@property
|
||||
def score_rect(self):
|
||||
return apply_factor((30, 60, 270, 55), self.factor)
|
||||
return apply_factor(XYWHRect(30, 60, 270, 55), self.factor)
|
||||
|
||||
@property
|
||||
def pfl_rect(self):
|
||||
return apply_factor((50, 125, 80, 100), self.factor)
|
||||
return apply_factor(XYWHRect(50, 125, 80, 100), self.factor)
|
||||
|
||||
@property
|
||||
def date_rect(self):
|
||||
return apply_factor((205, 200, 225, 25), self.factor)
|
||||
return apply_factor(XYWHRect(205, 200, 225, 25), self.factor)
|
||||
|
||||
|
||||
class ChieriBotV4Rois:
|
||||
def __init__(self, factor: Optional[float] = 1.0):
|
||||
def __init__(self, factor: float = 1.0):
|
||||
self.__factor = factor
|
||||
self.__component_rois = ChieriBotV4ComponentRois(factor)
|
||||
|
||||
@ -100,9 +100,7 @@ class ChieriBotV4Rois:
|
||||
def horizontal_items(self):
|
||||
return 3
|
||||
|
||||
@property
|
||||
def vertical_items(self):
|
||||
return 10
|
||||
vertical_items = 10
|
||||
|
||||
@property
|
||||
def b33_vertical_gap(self):
|
||||
@ -112,16 +110,17 @@ class ChieriBotV4Rois:
|
||||
first_rect = XYWHRect(x=self.left, y=self.top, w=self.width, h=self.height)
|
||||
results = []
|
||||
|
||||
last_rect = first_rect
|
||||
for vi in range(self.vertical_items):
|
||||
rect = XYWHRect(*first_rect)
|
||||
rect += (0, (self.vertical_gap + self.height) * vi, 0, 0)
|
||||
for hi in range(self.horizontal_items):
|
||||
if hi > 0:
|
||||
rect += ((self.width + self.horizontal_gap), 0, 0, 0)
|
||||
int_rect = construct_int_xywh_rect(rect)
|
||||
results.append(crop_xywh(img_bgr, int_rect))
|
||||
results.append(crop_xywh(img_bgr, rect.rounded()))
|
||||
last_rect = rect
|
||||
|
||||
rect += (
|
||||
last_rect += (
|
||||
-(self.width + self.horizontal_gap) * 2,
|
||||
self.height + self.b33_vertical_gap,
|
||||
0,
|
||||
@ -129,8 +128,7 @@ class ChieriBotV4Rois:
|
||||
)
|
||||
for hi in range(self.horizontal_items):
|
||||
if hi > 0:
|
||||
rect += ((self.width + self.horizontal_gap), 0, 0, 0)
|
||||
int_rect = construct_int_xywh_rect(rect)
|
||||
results.append(crop_xywh(img_bgr, int_rect))
|
||||
last_rect += ((self.width + self.horizontal_gap), 0, 0, 0)
|
||||
results.append(crop_xywh(img_bgr, last_rect.rounded()))
|
||||
|
||||
return results
|
||||
|
@ -1,10 +1,9 @@
|
||||
from dataclasses import dataclass
|
||||
from datetime import datetime
|
||||
from typing import Optional
|
||||
|
||||
import attrs
|
||||
|
||||
|
||||
@attrs.define
|
||||
@dataclass
|
||||
class B30OcrResultItem:
|
||||
rating_class: int
|
||||
score: int
|
||||
|
6
src/arcaea_offline_ocr/builders/__init__.py
Normal file
6
src/arcaea_offline_ocr/builders/__init__.py
Normal file
@ -0,0 +1,6 @@
|
||||
from .ihdb import ImageHashDatabaseBuildTask, ImageHashesDatabaseBuilder
|
||||
|
||||
__all__ = [
|
||||
"ImageHashDatabaseBuildTask",
|
||||
"ImageHashesDatabaseBuilder",
|
||||
]
|
112
src/arcaea_offline_ocr/builders/ihdb.py
Normal file
112
src/arcaea_offline_ocr/builders/ihdb.py
Normal file
@ -0,0 +1,112 @@
|
||||
from dataclasses import dataclass
|
||||
from datetime import datetime, timezone
|
||||
from typing import TYPE_CHECKING, Callable, List
|
||||
|
||||
import cv2
|
||||
|
||||
from arcaea_offline_ocr.core import hashers
|
||||
from arcaea_offline_ocr.providers import ImageCategory
|
||||
from arcaea_offline_ocr.providers.ihdb import (
|
||||
PROP_KEY_BUILT_AT,
|
||||
PROP_KEY_HASH_SIZE,
|
||||
PROP_KEY_HIGH_FREQ_FACTOR,
|
||||
ImageHashDatabaseIdProvider,
|
||||
ImageHashType,
|
||||
)
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from sqlite3 import Connection
|
||||
|
||||
from arcaea_offline_ocr.types import Mat
|
||||
|
||||
|
||||
def _default_imread_gray(image_path: str):
|
||||
return cv2.cvtColor(cv2.imread(image_path, cv2.IMREAD_COLOR), cv2.COLOR_BGR2GRAY)
|
||||
|
||||
|
||||
@dataclass
|
||||
class ImageHashDatabaseBuildTask:
|
||||
image_path: str
|
||||
image_id: str
|
||||
category: ImageCategory
|
||||
imread_function: Callable[[str], "Mat"] = _default_imread_gray
|
||||
|
||||
|
||||
@dataclass
|
||||
class _ImageHash:
|
||||
image_id: str
|
||||
category: ImageCategory
|
||||
image_hash_type: ImageHashType
|
||||
hash: bytes
|
||||
|
||||
|
||||
class ImageHashesDatabaseBuilder:
|
||||
@staticmethod
|
||||
def __insert_property(conn: "Connection", key: str, value: str):
|
||||
return conn.execute(
|
||||
"INSERT INTO properties (key, value) VALUES (?, ?)",
|
||||
(key, value),
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def build(
|
||||
cls,
|
||||
conn: "Connection",
|
||||
tasks: List[ImageHashDatabaseBuildTask],
|
||||
*,
|
||||
hash_size: int = 16,
|
||||
high_freq_factor: int = 4,
|
||||
):
|
||||
hashes: List[_ImageHash] = []
|
||||
|
||||
for task in tasks:
|
||||
img_gray = task.imread_function(task.image_path)
|
||||
|
||||
for hash_type, hash_mat in [
|
||||
(
|
||||
ImageHashType.AVERAGE,
|
||||
hashers.average(img_gray, hash_size),
|
||||
),
|
||||
(
|
||||
ImageHashType.DCT,
|
||||
hashers.dct(img_gray, hash_size, high_freq_factor),
|
||||
),
|
||||
(
|
||||
ImageHashType.DIFFERENCE,
|
||||
hashers.difference(img_gray, hash_size),
|
||||
),
|
||||
]:
|
||||
hashes.append(
|
||||
_ImageHash(
|
||||
image_id=task.image_id,
|
||||
image_hash_type=hash_type,
|
||||
category=task.category,
|
||||
hash=ImageHashDatabaseIdProvider.hash_mat_to_bytes(hash_mat),
|
||||
)
|
||||
)
|
||||
|
||||
conn.execute("CREATE TABLE properties (`key` VARCHAR, `value` VARCHAR)")
|
||||
conn.execute(
|
||||
"""CREATE TABLE hashes (
|
||||
`id` VARCHAR,
|
||||
`category` INTEGER,
|
||||
`hash_type` INTEGER,
|
||||
`hash` BLOB
|
||||
)"""
|
||||
)
|
||||
|
||||
now = datetime.now(tz=timezone.utc)
|
||||
timestamp = int(now.timestamp() * 1000)
|
||||
|
||||
cls.__insert_property(conn, PROP_KEY_HASH_SIZE, str(hash_size))
|
||||
cls.__insert_property(conn, PROP_KEY_HIGH_FREQ_FACTOR, str(high_freq_factor))
|
||||
cls.__insert_property(conn, PROP_KEY_BUILT_AT, str(timestamp))
|
||||
|
||||
conn.executemany(
|
||||
"INSERT INTO hashes (`id`, `category`, `hash_type`, `hash`) VALUES (?, ?, ?, ?)",
|
||||
[
|
||||
(it.image_id, it.category.value, it.image_hash_type.value, it.hash)
|
||||
for it in hashes
|
||||
],
|
||||
)
|
||||
conn.commit()
|
0
src/arcaea_offline_ocr/core/__init__.py
Normal file
0
src/arcaea_offline_ocr/core/__init__.py
Normal file
3
src/arcaea_offline_ocr/core/hashers/__init__.py
Normal file
3
src/arcaea_offline_ocr/core/hashers/__init__.py
Normal file
@ -0,0 +1,3 @@
|
||||
from .index import average, dct, difference
|
||||
|
||||
__all__ = ["average", "dct", "difference"]
|
7
src/arcaea_offline_ocr/core/hashers/_common.py
Normal file
7
src/arcaea_offline_ocr/core/hashers/_common.py
Normal file
@ -0,0 +1,7 @@
|
||||
import cv2
|
||||
|
||||
from arcaea_offline_ocr.types import Mat
|
||||
|
||||
|
||||
def _resize_image(src: Mat, dsize: ...) -> Mat:
|
||||
return cv2.resize(src, dsize, fx=0, fy=0, interpolation=cv2.INTER_AREA)
|
35
src/arcaea_offline_ocr/core/hashers/index.py
Normal file
35
src/arcaea_offline_ocr/core/hashers/index.py
Normal file
@ -0,0 +1,35 @@
|
||||
import cv2
|
||||
import numpy as np
|
||||
|
||||
from arcaea_offline_ocr.types import Mat
|
||||
|
||||
from ._common import _resize_image
|
||||
|
||||
|
||||
def average(img_gray: Mat, hash_size: int) -> Mat:
|
||||
img_resized = _resize_image(img_gray, (hash_size, hash_size))
|
||||
diff = img_resized > img_resized.mean()
|
||||
return diff.flatten()
|
||||
|
||||
|
||||
def difference(img_gray: Mat, hash_size: int) -> Mat:
|
||||
img_size = (hash_size + 1, hash_size)
|
||||
img_resized = _resize_image(img_gray, img_size)
|
||||
|
||||
previous = img_resized[:, :-1]
|
||||
current = img_resized[:, 1:]
|
||||
diff = previous > current
|
||||
return diff.flatten()
|
||||
|
||||
|
||||
def dct(img_gray: Mat, hash_size: int = 16, high_freq_factor: int = 4) -> Mat:
|
||||
# TODO: consistency?
|
||||
img_size_base = hash_size * high_freq_factor
|
||||
img_size = (img_size_base, img_size_base)
|
||||
|
||||
img_resized = _resize_image(img_gray, img_size)
|
||||
img_resized = img_resized.astype(np.float32)
|
||||
dct_mat = cv2.dct(img_resized)
|
||||
|
||||
hash_mat = dct_mat[:hash_size, :hash_size]
|
||||
return hash_mat > hash_mat.mean()
|
@ -1,15 +1,14 @@
|
||||
from dataclasses import dataclass
|
||||
from typing import Optional
|
||||
|
||||
import attrs
|
||||
|
||||
|
||||
@attrs.define
|
||||
@dataclass
|
||||
class DeviceOcrResult:
|
||||
rating_class: int
|
||||
pure: int
|
||||
far: int
|
||||
lost: int
|
||||
score: int
|
||||
pure: Optional[int] = None
|
||||
far: Optional[int] = None
|
||||
lost: Optional[int] = None
|
||||
max_recall: Optional[int] = None
|
||||
song_id: Optional[str] = None
|
||||
song_id_possibility: Optional[float] = None
|
||||
|
@ -1,15 +1,8 @@
|
||||
import cv2
|
||||
import numpy as np
|
||||
|
||||
from ..crop import crop_xywh
|
||||
from ..ocr import (
|
||||
FixRects,
|
||||
ocr_digit_samples_knn,
|
||||
ocr_digits_by_contour_knn,
|
||||
preprocess_hog,
|
||||
resize_fill_square,
|
||||
)
|
||||
from ..phash_db import ImagePhashDatabase
|
||||
from ..providers.knn import OcrKNearestTextProvider
|
||||
from ..types import Mat
|
||||
from .common import DeviceOcrResult
|
||||
from .rois.extractor import DeviceRoisExtractor
|
||||
@ -21,38 +14,37 @@ class DeviceOcr:
|
||||
self,
|
||||
extractor: DeviceRoisExtractor,
|
||||
masker: DeviceRoisMasker,
|
||||
knn_model: cv2.ml.KNearest,
|
||||
knn_provider: OcrKNearestTextProvider,
|
||||
phash_db: ImagePhashDatabase,
|
||||
):
|
||||
self.extractor = extractor
|
||||
self.masker = masker
|
||||
self.knn_model = knn_model
|
||||
self.knn_provider = knn_provider
|
||||
self.phash_db = phash_db
|
||||
|
||||
def pfl(self, roi_gray: Mat, factor: float = 1.25):
|
||||
contours, _ = cv2.findContours(
|
||||
roi_gray, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE
|
||||
)
|
||||
filtered_contours = [c for c in contours if cv2.contourArea(c) >= 5 * factor]
|
||||
rects = [cv2.boundingRect(c) for c in filtered_contours]
|
||||
rects = FixRects.connect_broken(rects, roi_gray.shape[1], roi_gray.shape[0])
|
||||
def contour_filter(cnt):
|
||||
return cv2.contourArea(cnt) >= 5 * factor
|
||||
|
||||
filtered_rects = [r for r in rects if r[2] >= 5 * factor and r[3] >= 6 * factor]
|
||||
filtered_rects = FixRects.split_connected(roi_gray, filtered_rects)
|
||||
filtered_rects = sorted(filtered_rects, key=lambda r: r[0])
|
||||
contours = self.knn_provider.contours(roi_gray)
|
||||
contours_filtered = self.knn_provider.contours(
|
||||
roi_gray, contours_filter=contour_filter
|
||||
)
|
||||
|
||||
roi_ocr = roi_gray.copy()
|
||||
filtered_contours_flattened = {tuple(c.flatten()) for c in filtered_contours}
|
||||
contours_filtered_flattened = {tuple(c.flatten()) for c in contours_filtered}
|
||||
for contour in contours:
|
||||
if tuple(contour.flatten()) in filtered_contours_flattened:
|
||||
if tuple(contour.flatten()) in contours_filtered_flattened:
|
||||
continue
|
||||
roi_ocr = cv2.fillPoly(roi_ocr, [contour], [0])
|
||||
digit_rois = [
|
||||
resize_fill_square(crop_xywh(roi_ocr, r), 20) for r in filtered_rects
|
||||
]
|
||||
|
||||
samples = preprocess_hog(digit_rois)
|
||||
return ocr_digit_samples_knn(samples, self.knn_model)
|
||||
ocr_result = self.knn_provider.result(
|
||||
roi_ocr,
|
||||
contours_filter=lambda cnt: cv2.contourArea(cnt) >= 5 * factor,
|
||||
rects_filter=lambda rect: rect[2] >= 5 * factor and rect[3] >= 6 * factor,
|
||||
)
|
||||
|
||||
return int(ocr_result) if ocr_result else 0
|
||||
|
||||
def pure(self):
|
||||
return self.pfl(self.masker.pure(self.extractor.pure))
|
||||
@ -65,13 +57,14 @@ class DeviceOcr:
|
||||
|
||||
def score(self):
|
||||
roi = self.masker.score(self.extractor.score)
|
||||
contours, _ = cv2.findContours(roi, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
|
||||
contours = self.knn_provider.contours(roi)
|
||||
for contour in contours:
|
||||
if (
|
||||
cv2.boundingRect(contour)[3] < roi.shape[0] * 0.6
|
||||
): # h < score_component_h * 0.6
|
||||
roi = cv2.fillPoly(roi, [contour], [0])
|
||||
return ocr_digits_by_contour_knn(roi, self.knn_model)
|
||||
ocr_result = self.knn_provider.result(roi)
|
||||
return int(ocr_result) if ocr_result else 0
|
||||
|
||||
def rating_class(self):
|
||||
roi = self.extractor.rating_class
|
||||
@ -85,9 +78,10 @@ class DeviceOcr:
|
||||
return max(enumerate(results), key=lambda i: np.count_nonzero(i[1]))[0]
|
||||
|
||||
def max_recall(self):
|
||||
return ocr_digits_by_contour_knn(
|
||||
self.masker.max_recall(self.extractor.max_recall), self.knn_model
|
||||
ocr_result = self.knn_provider.result(
|
||||
self.masker.max_recall(self.extractor.max_recall)
|
||||
)
|
||||
return int(ocr_result) if ocr_result else None
|
||||
|
||||
def clear_status(self):
|
||||
roi = self.extractor.clear_status
|
||||
@ -110,7 +104,7 @@ class DeviceOcr:
|
||||
@staticmethod
|
||||
def preprocess_char_icon(img_gray: Mat):
|
||||
h, w = img_gray.shape[:2]
|
||||
img = cv2.copyMakeBorder(img_gray, w - h, 0, 0, 0, cv2.BORDER_REPLICATE)
|
||||
img = cv2.copyMakeBorder(img_gray, max(w - h, 0), 0, 0, 0, cv2.BORDER_REPLICATE)
|
||||
h, w = img.shape[:2]
|
||||
img = cv2.fillPoly(
|
||||
img,
|
||||
|
@ -125,7 +125,7 @@ class DeviceRoisMaskerAutoT1(DeviceRoisMaskerAuto):
|
||||
|
||||
class DeviceRoisMaskerAutoT2(DeviceRoisMaskerAuto):
|
||||
PFL_HSV_MIN = np.array([0, 0, 248], np.uint8)
|
||||
PFL_HSV_MAX = np.array([179, 10, 255], np.uint8)
|
||||
PFL_HSV_MAX = np.array([179, 40, 255], np.uint8)
|
||||
|
||||
SCORE_HSV_MIN = np.array([0, 0, 180], np.uint8)
|
||||
SCORE_HSV_MAX = np.array([179, 255, 255], np.uint8)
|
||||
|
12
src/arcaea_offline_ocr/providers/__init__.py
Normal file
12
src/arcaea_offline_ocr/providers/__init__.py
Normal file
@ -0,0 +1,12 @@
|
||||
from .base import ImageCategory, ImageIdProvider, ImageIdProviderResult, OcrTextProvider
|
||||
from .ihdb import ImageHashDatabaseIdProvider
|
||||
from .knn import OcrKNearestTextProvider
|
||||
|
||||
__all__ = [
|
||||
"ImageCategory",
|
||||
"ImageHashDatabaseIdProvider",
|
||||
"OcrKNearestTextProvider",
|
||||
"ImageIdProvider",
|
||||
"OcrTextProvider",
|
||||
"ImageIdProviderResult",
|
||||
]
|
38
src/arcaea_offline_ocr/providers/base.py
Normal file
38
src/arcaea_offline_ocr/providers/base.py
Normal file
@ -0,0 +1,38 @@
|
||||
from abc import ABC, abstractmethod
|
||||
from dataclasses import dataclass
|
||||
from enum import IntEnum
|
||||
from typing import TYPE_CHECKING, Any, Sequence, Optional
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from ..types import Mat
|
||||
|
||||
|
||||
class OcrTextProvider(ABC):
|
||||
@abstractmethod
|
||||
def result_raw(self, img: "Mat", /, *args, **kwargs) -> Any: ...
|
||||
@abstractmethod
|
||||
def result(self, img: "Mat", /, *args, **kwargs) -> Optional[str]: ...
|
||||
|
||||
|
||||
class ImageCategory(IntEnum):
|
||||
JACKET = 0
|
||||
PARTNER_ICON = 1
|
||||
|
||||
|
||||
@dataclass(kw_only=True)
|
||||
class ImageIdProviderResult:
|
||||
image_id: str
|
||||
category: ImageCategory
|
||||
confidence: float
|
||||
|
||||
|
||||
class ImageIdProvider(ABC):
|
||||
@abstractmethod
|
||||
def result(
|
||||
self, img: "Mat", category: ImageCategory, /, *args, **kwargs
|
||||
) -> ImageIdProviderResult: ...
|
||||
|
||||
@abstractmethod
|
||||
def results(
|
||||
self, img: "Mat", category: ImageCategory, /, *args, **kwargs
|
||||
) -> Sequence[ImageIdProviderResult]: ...
|
194
src/arcaea_offline_ocr/providers/ihdb.py
Normal file
194
src/arcaea_offline_ocr/providers/ihdb.py
Normal file
@ -0,0 +1,194 @@
|
||||
import sqlite3
|
||||
from dataclasses import dataclass
|
||||
from datetime import datetime, timezone
|
||||
from enum import IntEnum
|
||||
from typing import TYPE_CHECKING, Any, Callable, List, Optional, TypeVar
|
||||
|
||||
from arcaea_offline_ocr.core import hashers
|
||||
|
||||
from .base import ImageCategory, ImageIdProvider, ImageIdProviderResult
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from arcaea_offline_ocr.types import Mat
|
||||
|
||||
|
||||
T = TypeVar("T")
|
||||
PROP_KEY_HASH_SIZE = "hash_size"
|
||||
PROP_KEY_HIGH_FREQ_FACTOR = "high_freq_factor"
|
||||
PROP_KEY_BUILT_AT = "built_at"
|
||||
|
||||
|
||||
def _sql_hamming_distance(hash1: bytes, hash2: bytes):
|
||||
assert len(hash1) == len(hash2), "hash size does not match!"
|
||||
count = sum(1 for byte1, byte2 in zip(hash1, hash2) if byte1 != byte2)
|
||||
return count
|
||||
|
||||
|
||||
class ImageHashType(IntEnum):
|
||||
AVERAGE = 0
|
||||
DIFFERENCE = 1
|
||||
DCT = 2
|
||||
|
||||
|
||||
@dataclass(kw_only=True)
|
||||
class ImageHashDatabaseIdProviderResult(ImageIdProviderResult):
|
||||
image_hash_type: ImageHashType
|
||||
|
||||
|
||||
class MissingPropertiesError(Exception):
|
||||
keys: List[str]
|
||||
|
||||
def __init__(self, keys, *args):
|
||||
super().__init__(*args)
|
||||
self.keys = keys
|
||||
|
||||
|
||||
class ImageHashDatabaseIdProvider(ImageIdProvider):
|
||||
def __init__(self, conn: sqlite3.Connection):
|
||||
self.conn = conn
|
||||
self.conn.create_function("HAMMING_DISTANCE", 2, _sql_hamming_distance)
|
||||
|
||||
self.properties = {
|
||||
PROP_KEY_HASH_SIZE: -1,
|
||||
PROP_KEY_HIGH_FREQ_FACTOR: -1,
|
||||
PROP_KEY_BUILT_AT: None,
|
||||
}
|
||||
|
||||
self._hashes_count = {
|
||||
ImageCategory.JACKET: 0,
|
||||
ImageCategory.PARTNER_ICON: 0,
|
||||
}
|
||||
|
||||
self._hash_length: int = -1
|
||||
|
||||
self._initialize()
|
||||
|
||||
@property
|
||||
def hash_size(self) -> int:
|
||||
return self.properties[PROP_KEY_HASH_SIZE]
|
||||
|
||||
@property
|
||||
def high_freq_factor(self) -> int:
|
||||
return self.properties[PROP_KEY_HIGH_FREQ_FACTOR]
|
||||
|
||||
@property
|
||||
def built_at(self) -> Optional[datetime]:
|
||||
return self.properties.get(PROP_KEY_BUILT_AT)
|
||||
|
||||
@property
|
||||
def hash_length(self):
|
||||
return self._hash_length
|
||||
|
||||
def _initialize(self):
|
||||
def get_property(key, converter: Callable[[Any], T]) -> Optional[T]:
|
||||
result = self.conn.execute(
|
||||
"SELECT value FROM properties WHERE key = ?",
|
||||
(key,),
|
||||
).fetchone()
|
||||
return converter(result[0]) if result is not None else None
|
||||
|
||||
def set_hashes_count(category: ImageCategory):
|
||||
self._hashes_count[category] = self.conn.execute(
|
||||
"SELECT COUNT(DISTINCT `id`) FROM hashes WHERE category = ?",
|
||||
(category.value,),
|
||||
).fetchone()[0]
|
||||
|
||||
properties_converter_map = {
|
||||
PROP_KEY_HASH_SIZE: lambda x: int(x),
|
||||
PROP_KEY_HIGH_FREQ_FACTOR: lambda x: int(x),
|
||||
PROP_KEY_BUILT_AT: lambda ts: datetime.fromtimestamp(
|
||||
int(ts) / 1000, tz=timezone.utc
|
||||
),
|
||||
}
|
||||
required_properties = [PROP_KEY_HASH_SIZE, PROP_KEY_HIGH_FREQ_FACTOR]
|
||||
|
||||
missing_properties = []
|
||||
for property_key, converter in properties_converter_map.items():
|
||||
value = get_property(property_key, converter)
|
||||
if value is None:
|
||||
if property_key in required_properties:
|
||||
missing_properties.append(property_key)
|
||||
|
||||
continue
|
||||
|
||||
self.properties[property_key] = value
|
||||
|
||||
if missing_properties:
|
||||
raise MissingPropertiesError(keys=missing_properties)
|
||||
|
||||
set_hashes_count(ImageCategory.JACKET)
|
||||
set_hashes_count(ImageCategory.PARTNER_ICON)
|
||||
|
||||
self._hash_length = self.hash_size**2
|
||||
|
||||
def lookup_hash(
|
||||
self, category: ImageCategory, hash_type: ImageHashType, hash: bytes
|
||||
) -> List[ImageHashDatabaseIdProviderResult]:
|
||||
cursor = self.conn.execute(
|
||||
"""
|
||||
SELECT
|
||||
`id`,
|
||||
HAMMING_DISTANCE(hash, ?) AS distance
|
||||
FROM hashes
|
||||
WHERE category = ? AND hash_type = ?
|
||||
ORDER BY distance ASC LIMIT 10""",
|
||||
(hash, category.value, hash_type.value),
|
||||
)
|
||||
|
||||
results = []
|
||||
for id_, distance in cursor.fetchall():
|
||||
results.append(
|
||||
ImageHashDatabaseIdProviderResult(
|
||||
image_id=id_,
|
||||
category=category,
|
||||
confidence=(self.hash_length - distance) / self.hash_length,
|
||||
image_hash_type=hash_type,
|
||||
)
|
||||
)
|
||||
|
||||
return results
|
||||
|
||||
@staticmethod
|
||||
def hash_mat_to_bytes(hash: "Mat") -> bytes:
|
||||
return bytes([255 if b else 0 for b in hash.flatten()])
|
||||
|
||||
def results(self, img: "Mat", category: ImageCategory, /):
|
||||
results: List[ImageHashDatabaseIdProviderResult] = []
|
||||
|
||||
results.extend(
|
||||
self.lookup_hash(
|
||||
category,
|
||||
ImageHashType.AVERAGE,
|
||||
self.hash_mat_to_bytes(hashers.average(img, self.hash_size)),
|
||||
)
|
||||
)
|
||||
results.extend(
|
||||
self.lookup_hash(
|
||||
category,
|
||||
ImageHashType.DIFFERENCE,
|
||||
self.hash_mat_to_bytes(hashers.difference(img, self.hash_size)),
|
||||
)
|
||||
)
|
||||
results.extend(
|
||||
self.lookup_hash(
|
||||
category,
|
||||
ImageHashType.DCT,
|
||||
self.hash_mat_to_bytes(
|
||||
hashers.dct(img, self.hash_size, self.high_freq_factor)
|
||||
),
|
||||
)
|
||||
)
|
||||
|
||||
return results
|
||||
|
||||
def result(
|
||||
self,
|
||||
img: "Mat",
|
||||
category: ImageCategory,
|
||||
/,
|
||||
*,
|
||||
hash_type: ImageHashType = ImageHashType.DCT,
|
||||
):
|
||||
return [
|
||||
it for it in self.results(img, category) if it.image_hash_type == hash_type
|
||||
][0]
|
@ -1,18 +1,19 @@
|
||||
import logging
|
||||
import math
|
||||
from typing import Optional, Sequence, Tuple
|
||||
from typing import TYPE_CHECKING, Callable, Optional, Sequence, Tuple
|
||||
|
||||
import cv2
|
||||
import numpy as np
|
||||
|
||||
from .crop import crop_xywh
|
||||
from .types import Mat
|
||||
from ..crop import crop_xywh
|
||||
from .base import OcrTextProvider
|
||||
|
||||
__all__ = [
|
||||
"FixRects",
|
||||
"preprocess_hog",
|
||||
"ocr_digits_by_contour_get_samples",
|
||||
"ocr_digits_by_contour_knn",
|
||||
]
|
||||
if TYPE_CHECKING:
|
||||
from cv2.ml import KNearest
|
||||
|
||||
from ..types import Mat
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class FixRects:
|
||||
@ -68,7 +69,7 @@ class FixRects:
|
||||
|
||||
@staticmethod
|
||||
def split_connected(
|
||||
img_masked: Mat,
|
||||
img_masked: "Mat",
|
||||
rects: Sequence[Tuple[int, int, int, int]],
|
||||
rect_wh_ratio: float = 1.05,
|
||||
width_range_ratio: float = 0.1,
|
||||
@ -118,7 +119,7 @@ class FixRects:
|
||||
return return_rects
|
||||
|
||||
|
||||
def resize_fill_square(img: Mat, target: int = 20):
|
||||
def resize_fill_square(img: "Mat", target: int = 20):
|
||||
h, w = img.shape[:2]
|
||||
if h > w:
|
||||
new_h = target
|
||||
@ -152,29 +153,88 @@ def preprocess_hog(digit_rois):
|
||||
|
||||
def ocr_digit_samples_knn(__samples, knn_model: cv2.ml.KNearest, k: int = 4):
|
||||
_, results, _, _ = knn_model.findNearest(__samples, k)
|
||||
result_list = [int(r) for r in results.ravel()]
|
||||
result_str = "".join(str(r) for r in result_list if r > -1)
|
||||
return int(result_str) if result_str else 0
|
||||
return [int(r) for r in results.ravel()]
|
||||
|
||||
|
||||
def ocr_digits_by_contour_get_samples(__roi_gray: Mat, size: int):
|
||||
roi = __roi_gray.copy()
|
||||
contours, _ = cv2.findContours(roi, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
|
||||
rects = [cv2.boundingRect(c) for c in contours]
|
||||
rects = FixRects.connect_broken(rects, roi.shape[1], roi.shape[0])
|
||||
rects = FixRects.split_connected(roi, rects)
|
||||
rects = sorted(rects, key=lambda r: r[0])
|
||||
# digit_rois = [cv2.resize(crop_xywh(roi, rect), size) for rect in rects]
|
||||
digit_rois = [resize_fill_square(crop_xywh(roi, rect), size) for rect in rects]
|
||||
return preprocess_hog(digit_rois)
|
||||
class OcrKNearestTextProvider(OcrTextProvider):
|
||||
_ContourFilter = Callable[["Mat"], bool]
|
||||
_RectsFilter = Callable[[Sequence[int]], bool]
|
||||
|
||||
def __init__(self, model: "KNearest"):
|
||||
self.model = model
|
||||
|
||||
def ocr_digits_by_contour_knn(
|
||||
__roi_gray: Mat,
|
||||
knn_model: cv2.ml.KNearest,
|
||||
*,
|
||||
k=4,
|
||||
size: int = 20,
|
||||
) -> int:
|
||||
samples = ocr_digits_by_contour_get_samples(__roi_gray, size)
|
||||
return ocr_digit_samples_knn(samples, knn_model, k)
|
||||
def contours(
|
||||
self, img: "Mat", /, *, contours_filter: Optional[_ContourFilter] = None
|
||||
):
|
||||
cnts, _ = cv2.findContours(img, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
|
||||
if contours_filter:
|
||||
cnts = list(filter(contours_filter, cnts))
|
||||
|
||||
return cnts
|
||||
|
||||
def result_raw(
|
||||
self,
|
||||
img: "Mat",
|
||||
/,
|
||||
*,
|
||||
fix_rects: bool = True,
|
||||
contours_filter: Optional[_ContourFilter] = None,
|
||||
rects_filter: Optional[_RectsFilter] = None,
|
||||
):
|
||||
"""
|
||||
:param img: grayscaled roi
|
||||
"""
|
||||
|
||||
try:
|
||||
cnts, _ = cv2.findContours(img, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
||||
if contours_filter:
|
||||
cnts = list(filter(contours_filter, cnts))
|
||||
|
||||
rects = [cv2.boundingRect(cnt) for cnt in cnts]
|
||||
if fix_rects and rects_filter:
|
||||
rects = FixRects.connect_broken(rects, img.shape[1], img.shape[0]) # type: ignore
|
||||
rects = list(filter(rects_filter, rects))
|
||||
rects = FixRects.split_connected(img, rects)
|
||||
elif fix_rects:
|
||||
rects = FixRects.connect_broken(rects, img.shape[1], img.shape[0]) # type: ignore
|
||||
rects = FixRects.split_connected(img, rects)
|
||||
elif rects_filter:
|
||||
rects = list(filter(rects_filter, rects))
|
||||
|
||||
rects = sorted(rects, key=lambda r: r[0])
|
||||
|
||||
digits = []
|
||||
for rect in rects:
|
||||
digit = crop_xywh(img, rect)
|
||||
digit = resize_fill_square(digit, 20)
|
||||
digits.append(digit)
|
||||
samples = preprocess_hog(digits)
|
||||
return ocr_digit_samples_knn(samples, self.model)
|
||||
except Exception:
|
||||
logger.exception("Error occurred during KNearest OCR")
|
||||
return None
|
||||
|
||||
def result(
|
||||
self,
|
||||
img: "Mat",
|
||||
/,
|
||||
*,
|
||||
fix_rects: bool = True,
|
||||
contours_filter: Optional[_ContourFilter] = None,
|
||||
rects_filter: Optional[_RectsFilter] = None,
|
||||
):
|
||||
"""
|
||||
:param img: grayscaled roi
|
||||
"""
|
||||
|
||||
raw = self.result_raw(
|
||||
img,
|
||||
fix_rects=fix_rects,
|
||||
contours_filter=contours_filter,
|
||||
rects_filter=rects_filter,
|
||||
)
|
||||
return (
|
||||
"".join(["".join(str(r) for r in raw if r > -1)])
|
||||
if raw is not None
|
||||
else None
|
||||
)
|
@ -1,25 +1,36 @@
|
||||
from collections.abc import Iterable
|
||||
from typing import NamedTuple, Tuple, Union
|
||||
from math import floor
|
||||
from typing import Callable, NamedTuple, Union
|
||||
|
||||
import numpy as np
|
||||
|
||||
Mat = np.ndarray
|
||||
|
||||
_IntOrFloat = Union[int, float]
|
||||
|
||||
|
||||
class XYWHRect(NamedTuple):
|
||||
x: int
|
||||
y: int
|
||||
w: int
|
||||
h: int
|
||||
x: _IntOrFloat
|
||||
y: _IntOrFloat
|
||||
w: _IntOrFloat
|
||||
h: _IntOrFloat
|
||||
|
||||
def __add__(self, other: Union["XYWHRect", Tuple[int, int, int, int]]):
|
||||
if not isinstance(other, Iterable) or len(other) != 4:
|
||||
raise ValueError()
|
||||
def _to_int(self, func: Callable[[_IntOrFloat], int]):
|
||||
return (func(self.x), func(self.y), func(self.w), func(self.h))
|
||||
|
||||
def rounded(self):
|
||||
return self._to_int(round)
|
||||
|
||||
def floored(self):
|
||||
return self._to_int(floor)
|
||||
|
||||
def __add__(self, other):
|
||||
if not isinstance(other, (list, tuple)) or len(other) != 4:
|
||||
raise TypeError()
|
||||
|
||||
return self.__class__(*[a + b for a, b in zip(self, other)])
|
||||
|
||||
def __sub__(self, other: Union["XYWHRect", Tuple[int, int, int, int]]):
|
||||
if not isinstance(other, Iterable) or len(other) != 4:
|
||||
raise ValueError()
|
||||
def __sub__(self, other):
|
||||
if not isinstance(other, (list, tuple)) or len(other) != 4:
|
||||
raise TypeError()
|
||||
|
||||
return self.__class__(*[a - b for a, b in zip(self, other)])
|
||||
|
@ -1,5 +1,5 @@
|
||||
from collections.abc import Iterable
|
||||
from typing import Callable, TypeVar, Union, overload
|
||||
from typing import TypeVar, overload
|
||||
|
||||
import cv2
|
||||
import numpy as np
|
||||
@ -15,32 +15,25 @@ def imread_unicode(filepath: str, flags: int = cv2.IMREAD_UNCHANGED):
|
||||
return cv2.imdecode(np.fromfile(filepath, dtype=np.uint8), flags)
|
||||
|
||||
|
||||
def construct_int_xywh_rect(
|
||||
rect: XYWHRect, func: Callable[[Union[int, float]], int] = round
|
||||
):
|
||||
return XYWHRect(*[func(num) for num in rect])
|
||||
@overload
|
||||
def apply_factor(item: int, factor: float) -> float: ...
|
||||
|
||||
|
||||
@overload
|
||||
def apply_factor(item: int, factor: float) -> float:
|
||||
...
|
||||
|
||||
|
||||
@overload
|
||||
def apply_factor(item: float, factor: float) -> float:
|
||||
...
|
||||
def apply_factor(item: float, factor: float) -> float: ...
|
||||
|
||||
|
||||
T = TypeVar("T", bound=Iterable)
|
||||
|
||||
|
||||
@overload
|
||||
def apply_factor(item: T, factor: float) -> T:
|
||||
...
|
||||
def apply_factor(item: T, factor: float) -> T: ...
|
||||
|
||||
|
||||
def apply_factor(item, factor: float):
|
||||
if isinstance(item, (int, float)):
|
||||
return item * factor
|
||||
if isinstance(item, XYWHRect):
|
||||
return item.__class__(*[i * factor for i in item])
|
||||
if isinstance(item, Iterable):
|
||||
return item.__class__([i * factor for i in item])
|
||||
|
Reference in New Issue
Block a user