101 lines
3.3 KiB
Python

import cv2
import numpy as np
from ...crop import crop_xywh
from ...mask import mask_byd, mask_ftr, mask_gray, mask_prs, mask_pst, mask_white
from ...ocr import ocr_digits_by_contour_knn
from ...sift_db import SIFTDatabase
from ...types import Mat, cv2_ml_KNearest
from ..shared import DeviceOcrResult
from .preprocess import find_digits_preprocess
from .rois import DeviceV2Rois
from .shared import MAX_RECALL_CLOSE_KERNEL
class DeviceV2Ocr:
def __init__(self, knn_model: cv2_ml_KNearest, sift_db: SIFTDatabase):
self.__knn_model = knn_model
self.__sift_db = sift_db
@property
def knn_model(self):
if not self.__knn_model:
raise ValueError("`knn_model` unset.")
return self.__knn_model
@knn_model.setter
def knn_model(self, value: cv2_ml_KNearest):
self.__knn_model = value
@property
def sift_db(self):
if not self.__sift_db:
raise ValueError("`sift_db` unset.")
return self.__sift_db
@sift_db.setter
def sift_db(self, value: SIFTDatabase):
self.__sift_db = value
def _base_ocr_digits(self, roi_masked: Mat):
return ocr_digits_by_contour_knn(
find_digits_preprocess(roi_masked), self.knn_model
)
def ocr_song_id(self, rois: DeviceV2Rois):
cover = cv2.cvtColor(rois.cover, cv2.COLOR_BGR2GRAY)
return self.sift_db.lookup_img(cover)[0]
def ocr_rating_class(self, rois: DeviceV2Rois):
roi = cv2.cvtColor(rois.max_recall_rating_class, cv2.COLOR_BGR2HSV)
results = [mask_pst(roi), mask_prs(roi), mask_ftr(roi), mask_byd(roi)]
return max(enumerate(results), key=lambda i: np.count_nonzero(i[1]))[0]
def ocr_score(self, rois: DeviceV2Rois):
roi = cv2.cvtColor(rois.score, cv2.COLOR_BGR2HSV)
roi = mask_white(roi)
return self._base_ocr_digits(roi)
def ocr_pure(self, rois: DeviceV2Rois):
roi = mask_gray(rois.pure)
return self._base_ocr_digits(roi)
def ocr_far(self, rois: DeviceV2Rois):
roi = mask_gray(rois.far)
return self._base_ocr_digits(roi)
def ocr_lost(self, rois: DeviceV2Rois):
roi = mask_gray(rois.lost)
return self._base_ocr_digits(roi)
def ocr_max_recall(self, rois: DeviceV2Rois):
roi = mask_gray(rois.max_recall_rating_class)
roi_closed = cv2.morphologyEx(roi, cv2.MORPH_CLOSE, MAX_RECALL_CLOSE_KERNEL)
contours, _ = cv2.findContours(
roi_closed, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE
)
rects = sorted(
[cv2.boundingRect(c) for c in contours], key=lambda r: r[0], reverse=True
)
max_recall_roi = crop_xywh(roi, rects[0])
return self._base_ocr_digits(max_recall_roi)
def ocr(self, rois: DeviceV2Rois):
song_id = self.ocr_song_id(rois)
rating_class = self.ocr_rating_class(rois)
score = self.ocr_score(rois)
pure = self.ocr_pure(rois)
far = self.ocr_far(rois)
lost = self.ocr_lost(rois)
max_recall = self.ocr_max_recall(rois)
return DeviceOcrResult(
rating_class=rating_class,
pure=pure,
far=far,
lost=lost,
score=score,
max_recall=max_recall,
song_id=song_id,
)