refactor!: device.v2.find -> device.v2.preprocess

This commit is contained in:
283375 2023-08-29 23:44:01 +08:00
parent 193ca77b0d
commit 77aa640390
Signed by: 283375
SSH Key Fingerprint: SHA256:UcX0qg6ZOSDOeieKPGokA5h7soykG61nz2uxuQgVLSk
3 changed files with 55 additions and 203 deletions

View File

@ -1,202 +0,0 @@
from typing import List, Tuple
import attrs
import cv2
import numpy as np
from ...crop import crop_xywh
from ...mask import mask_gray
from ...types import Mat, XYWHRect
from .definition import DeviceV2
from .shared import *
@attrs.define(kw_only=True)
class FindOcrBoundingRectsResult:
pure: XYWHRect
far: XYWHRect
lost: XYWHRect
max_recall: XYWHRect
gray_masked_image: Mat
def find_ocr_bounding_rects(__img_bgr: Mat, device: DeviceV2):
"""
[DEPRECATED]
---
Deprecated since new method supports directly calculate rois.
"""
img_masked = mask_gray(__img_bgr)
# process pure/far/lost
pfl_roi = crop_xywh(img_masked, device.pure_far_lost)
# close small gaps in fonts
# pfl_roi = cv2.GaussianBlur(pfl_roi, [5, 5], 0, 0)
# cv2.imshow("test2", pfl_roi)
# cv2.waitKey(0)
pfl_roi = cv2.morphologyEx(pfl_roi, cv2.MORPH_OPEN, PFL_DENOISE_KERNEL)
pfl_roi = cv2.morphologyEx(pfl_roi, cv2.MORPH_CLOSE, PFL_CLOSE_HORIZONTAL_KERNEL)
pfl_contours, _ = cv2.findContours(
pfl_roi, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE
)
pfl_contours = sorted(pfl_contours, key=cv2.contourArea)
# pfl_roi_cnt = cv2.drawContours(pfl_roi, pfl_contours, -1, [50], 2)
# cv2.imshow("test2", pfl_roi_cnt)
# cv2.waitKey(0)
pfl_rects = [list(cv2.boundingRect(c)) for c in pfl_contours]
# for r in pfl_rects:
# img = pfl_roi.copy()
# cv2.imshow("test2", cv2.rectangle(img, r, [80] * 3, 2))
# cv2.waitKey(0)
# only keep those rect.height > mask.height * 0.15
pfl_rects = list(filter(lambda rect: rect[3] > pfl_roi.shape[0] * 0.15, pfl_rects))
# choose the first 3 rects by rect.x value
pfl_rects = sorted(pfl_rects, key=lambda rect: rect[0])[:3]
# and sort them by rect.y
# ensure it is pure -> far -> lost roi.
pure_rect, far_rect, lost_rect = sorted(pfl_rects, key=lambda rect: rect[1])
# for r in [pure_rect, far_rect, lost_rect]:
# img = pfl_roi.copy()
# cv2.imshow("test2", cv2.rectangle(img, r, [80] * 3, 2))
# cv2.waitKey(0)
# process max recall
max_recall_roi = crop_xywh(img_masked, device.max_recall_rating_class)
max_recall_roi = cv2.morphologyEx(
max_recall_roi, cv2.MORPH_OPEN, MAX_RECALL_DENOISE_KERNEL
)
max_recall_roi = cv2.erode(max_recall_roi, MAX_RECALL_ERODE_KERNEL)
max_recall_roi = cv2.morphologyEx(
max_recall_roi, cv2.MORPH_CLOSE, MAX_RECALL_CLOSE_KERNEL
)
max_recall_contours, _ = cv2.findContours(
max_recall_roi, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE
)
max_recall_rects = [list(cv2.boundingRect(c)) for c in max_recall_contours]
# only keep those rect.height > mask.height * 0.1
max_recall_rects = list(
filter(lambda rect: rect[3] > max_recall_roi.shape[0] * 0.1, max_recall_rects)
)
# select the 2nd rect by rect.x
max_recall_rect = max_recall_rects[1]
# img = max_recall_roi.copy()
# cv2.imshow("test2", cv2.rectangle(img, max_recall_rect, [80] * 3, 2))
# cv2.waitKey(0)
# finally, map rect geometries to the original image
for rect in [pure_rect, far_rect, lost_rect]:
rect[0] += device.pure_far_lost[0]
rect[1] += device.pure_far_lost[1]
for rect in [max_recall_rect]:
rect[0] += device.max_recall_rating_class[0]
rect[1] += device.max_recall_rating_class[1]
# add a 2px border to every rect
for rect in [pure_rect, far_rect, lost_rect, max_recall_rect]:
# width += 2, height += 2
rect[2] += 4
rect[3] += 4
# top -= 1, left -= 1
rect[0] -= 2
rect[1] -= 2
return FindOcrBoundingRectsResult(
pure=XYWHRect(*pure_rect),
far=XYWHRect(*far_rect),
lost=XYWHRect(*lost_rect),
max_recall=XYWHRect(*max_recall_rect),
gray_masked_image=img_masked,
)
def find_digits_preprocess(__img_masked: Mat) -> Mat:
img = __img_masked.copy()
img_denoised = cv2.morphologyEx(img, cv2.MORPH_OPEN, PFL_DENOISE_KERNEL)
# img_denoised = cv2.bitwise_and(img, img_denoised)
denoise_contours, _ = cv2.findContours(
img_denoised, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE
)
# cv2.drawContours(img_denoised, contours, -1, [128], 2)
# fill all contour.area < max(contour.area) * ratio with black pixels
# for denoise purposes
# define threshold contour area
# we assume the smallest digit "1", is 80% height of the image,
# and at least 1.5 pixel wide, considering cv2.contourArea always
# returns a smaller value than the actual contour area.
max_contour_area = __img_masked.shape[0] * 0.8 * 1.5
filtered_contours = list(
filter(lambda c: cv2.contourArea(c) >= max_contour_area, denoise_contours)
)
filtered_contours_flattened = {tuple(c.flatten()) for c in filtered_contours}
for contour in denoise_contours:
if tuple(contour.flatten()) not in filtered_contours_flattened:
img_denoised = cv2.fillPoly(img_denoised, [contour], [0])
# old algorithm, finding the largest contour area
## contour_area_tuples = [(contour, cv2.contourArea(contour)) for contour in contours]
## contour_area_tuples = sorted(
## contour_area_tuples, key=lambda item: item[1], reverse=True
## )
## max_contour_area = contour_area_tuples[0][1]
## print(max_contour_area, [item[1] for item in contour_area_tuples])
## contours_filter_end_index = len(contours)
## for i, item in enumerate(contour_area_tuples):
## contour, area = item
## if area < max_contour_area * 0.15:
## contours_filter_end_index = i
## break
## contours = [item[0] for item in contour_area_tuples]
## for contour in contours[-contours_filter_end_index - 1:]:
## img = cv2.fillPoly(img, [contour], [0])
## img_denoised = cv2.fillPoly(img_denoised, [contour], [0])
## contours = contours[:contours_filter_end_index]
return img_denoised
def find_digits(__img_masked: Mat) -> List[Mat]:
img_denoised = find_digits_preprocess(__img_masked)
cv2.imshow("den", img_denoised)
cv2.waitKey(0)
contours, _ = cv2.findContours(
img_denoised, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE
)
img_x_roi = [] # type: List[Tuple[int, Mat]]
# img_x_roi = list[tuple[int, Mat]] - list[tuple[rect.x, roi_denoised]]
for contour in contours:
rect = cv2.boundingRect(contour)
# filter out rect.height < img.height * factor
if rect[3] < img_denoised.shape[0] * 0.8:
continue
contour -= (rect[0], rect[1])
img_denoised_roi = crop_xywh(img_denoised, rect)
# make a same size black image
contour_mask = np.zeros(img_denoised_roi.shape, img_denoised_roi.dtype)
# fill the contour area with white pixels
contour_mask = cv2.fillPoly(contour_mask, [contour], [255])
# apply mask to cropped images
img_denoised_roi_masked = cv2.bitwise_and(contour_mask, img_denoised_roi)
img_x_roi.append((rect[0], img_denoised_roi_masked))
# sort by rect.x
img_x_roi = sorted(img_x_roi, key=lambda item: item[0])
return [item[1] for item in img_x_roi]

View File

@ -7,7 +7,7 @@ from ...ocr import ocr_digits_by_contour_knn
from ...sift_db import SIFTDatabase
from ...types import Mat, cv2_ml_KNearest
from ..shared import DeviceOcrResult
from .find import find_digits_preprocess
from .preprocess import find_digits_preprocess
from .rois import DeviceV2Rois
from .shared import MAX_RECALL_CLOSE_KERNEL

View File

@ -0,0 +1,54 @@
import cv2
from ...types import Mat
from .shared import *
def find_digits_preprocess(__img_masked: Mat) -> Mat:
img = __img_masked.copy()
img_denoised = cv2.morphologyEx(img, cv2.MORPH_OPEN, PFL_DENOISE_KERNEL)
# img_denoised = cv2.bitwise_and(img, img_denoised)
denoise_contours, _ = cv2.findContours(
img_denoised, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE
)
# cv2.drawContours(img_denoised, contours, -1, [128], 2)
# fill all contour.area < max(contour.area) * ratio with black pixels
# for denoise purposes
# define threshold contour area
# we assume the smallest digit "1", is 80% height of the image,
# and at least 1.5 pixel wide, considering cv2.contourArea always
# returns a smaller value than the actual contour area.
max_contour_area = __img_masked.shape[0] * 0.8 * 1.5
filtered_contours = list(
filter(lambda c: cv2.contourArea(c) >= max_contour_area, denoise_contours)
)
filtered_contours_flattened = {tuple(c.flatten()) for c in filtered_contours}
for contour in denoise_contours:
if tuple(contour.flatten()) not in filtered_contours_flattened:
img_denoised = cv2.fillPoly(img_denoised, [contour], [0])
# old algorithm, finding the largest contour area
## contour_area_tuples = [(contour, cv2.contourArea(contour)) for contour in contours]
## contour_area_tuples = sorted(
## contour_area_tuples, key=lambda item: item[1], reverse=True
## )
## max_contour_area = contour_area_tuples[0][1]
## print(max_contour_area, [item[1] for item in contour_area_tuples])
## contours_filter_end_index = len(contours)
## for i, item in enumerate(contour_area_tuples):
## contour, area = item
## if area < max_contour_area * 0.15:
## contours_filter_end_index = i
## break
## contours = [item[0] for item in contour_area_tuples]
## for contour in contours[-contours_filter_end_index - 1:]:
## img = cv2.fillPoly(img, [contour], [0])
## img_denoised = cv2.fillPoly(img_denoised, [contour], [0])
## contours = contours[:contours_filter_end_index]
return img_denoised