55 lines
2.1 KiB
Python

import cv2
from ...types import Mat
from .shared import *
def find_digits_preprocess(__img_masked: Mat) -> Mat:
img = __img_masked.copy()
img_denoised = cv2.morphologyEx(img, cv2.MORPH_OPEN, PFL_DENOISE_KERNEL)
# img_denoised = cv2.bitwise_and(img, img_denoised)
denoise_contours, _ = cv2.findContours(
img_denoised, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE
)
# cv2.drawContours(img_denoised, contours, -1, [128], 2)
# fill all contour.area < max(contour.area) * ratio with black pixels
# for denoise purposes
# define threshold contour area
# we assume the smallest digit "1", is 80% height of the image,
# and at least 1.5 pixel wide, considering cv2.contourArea always
# returns a smaller value than the actual contour area.
max_contour_area = __img_masked.shape[0] * 0.8 * 1.5
filtered_contours = list(
filter(lambda c: cv2.contourArea(c) >= max_contour_area, denoise_contours)
)
filtered_contours_flattened = {tuple(c.flatten()) for c in filtered_contours}
for contour in denoise_contours:
if tuple(contour.flatten()) not in filtered_contours_flattened:
img_denoised = cv2.fillPoly(img_denoised, [contour], [0])
# old algorithm, finding the largest contour area
## contour_area_tuples = [(contour, cv2.contourArea(contour)) for contour in contours]
## contour_area_tuples = sorted(
## contour_area_tuples, key=lambda item: item[1], reverse=True
## )
## max_contour_area = contour_area_tuples[0][1]
## print(max_contour_area, [item[1] for item in contour_area_tuples])
## contours_filter_end_index = len(contours)
## for i, item in enumerate(contour_area_tuples):
## contour, area = item
## if area < max_contour_area * 0.15:
## contours_filter_end_index = i
## break
## contours = [item[0] for item in contour_area_tuples]
## for contour in contours[-contours_filter_end_index - 1:]:
## img = cv2.fillPoly(img, [contour], [0])
## img_denoised = cv2.fillPoly(img_denoised, [contour], [0])
## contours = contours[:contours_filter_end_index]
return img_denoised