mirror of
https://github.com/283375/arcaea-offline-ocr.git
synced 2025-07-02 04:46:27 +00:00
Compare commits
56 Commits
580744b641
...
0.1.0a0
Author | SHA1 | Date | |
---|---|---|---|
0b53682398
|
|||
b117346b46
|
|||
ad0a33daad
|
|||
c08a1332a7
|
|||
0055d9e8da
|
|||
06156db9c2
|
|||
c65798a02d
|
|||
f11dc6e38f
|
|||
2b18906935
|
|||
abfd37dbef
|
|||
3ebb058cdf
|
|||
b545c5b6bf
|
|||
212afa32db
|
|||
2264e90b8e
|
|||
619bff2ea4
|
|||
413188d86a
|
|||
cfe8de043c
|
|||
3f6c08b2ad
|
|||
854d5558cf
|
|||
df77421a34
|
|||
2241230a7a
|
|||
fb4b1fb9b8
|
|||
00cd32dfdc
|
|||
17f6c2bac7 | |||
76e6adbbf7
|
|||
288ccddfa1
|
|||
58d5022952
|
|||
80404c436f
|
|||
bdf748bc63
|
|||
c864414b88
|
|||
0fbd33645b
|
|||
2643b43248
|
|||
f9c867e180
|
|||
f2f854040f
|
|||
cf46bf7a59
|
|||
122a546174
|
|||
42bcd7b430
|
|||
3400df2d52
|
|||
4fd31b1e9b
|
|||
82229b8b5c
|
|||
2895eb7233
|
|||
02599780e3
|
|||
5e0642c832
|
|||
ede2b4ec51
|
|||
6a19ead8d1
|
|||
d13076c667
|
|||
1aa71685ce
|
|||
d52d545864
|
|||
c009a28f92
|
|||
d5ccbd5a01
|
|||
0d8e4dea8e
|
|||
2b01f68a73
|
|||
897705d23d
|
|||
c6aba3a7e9
|
|||
f7cfb84135
|
|||
8d33491d9b
|
39
.github/workflows/build-and-draft-release.yml
vendored
Normal file
39
.github/workflows/build-and-draft-release.yml
vendored
Normal file
@ -0,0 +1,39 @@
|
|||||||
|
name: "Build and draft a release"
|
||||||
|
|
||||||
|
on:
|
||||||
|
workflow_dispatch:
|
||||||
|
push:
|
||||||
|
tags:
|
||||||
|
- '*.*.*'
|
||||||
|
|
||||||
|
permissions:
|
||||||
|
contents: write
|
||||||
|
discussions: write
|
||||||
|
|
||||||
|
jobs:
|
||||||
|
build-and-draft-release:
|
||||||
|
runs-on: ubuntu-latest
|
||||||
|
steps:
|
||||||
|
- name: Checkout
|
||||||
|
uses: actions/checkout@v4
|
||||||
|
with:
|
||||||
|
fetch-depth: 0
|
||||||
|
|
||||||
|
- name: Set up Python environment
|
||||||
|
uses: actions/setup-python@v5
|
||||||
|
with:
|
||||||
|
python-version: "3.x"
|
||||||
|
|
||||||
|
- name: Build package
|
||||||
|
run: |
|
||||||
|
pip install build
|
||||||
|
python -m build
|
||||||
|
|
||||||
|
- name: Draft a release
|
||||||
|
uses: softprops/action-gh-release@v2
|
||||||
|
with:
|
||||||
|
discussion_category_name: New releases
|
||||||
|
draft: true
|
||||||
|
generate_release_notes: true
|
||||||
|
files: |
|
||||||
|
dist/*
|
2
.gitignore
vendored
2
.gitignore
vendored
@ -1,6 +1,8 @@
|
|||||||
__debug*
|
__debug*
|
||||||
.vscode/
|
.vscode/
|
||||||
|
|
||||||
|
*venv*/
|
||||||
|
|
||||||
# Byte-compiled / optimized / DLL files
|
# Byte-compiled / optimized / DLL files
|
||||||
__pycache__/
|
__pycache__/
|
||||||
*.py[cod]
|
*.py[cod]
|
||||||
|
@ -4,13 +4,10 @@ repos:
|
|||||||
hooks:
|
hooks:
|
||||||
- id: end-of-file-fixer
|
- id: end-of-file-fixer
|
||||||
- id: trailing-whitespace
|
- id: trailing-whitespace
|
||||||
- repo: https://github.com/psf/black
|
|
||||||
rev: 23.1.0
|
- repo: https://github.com/astral-sh/ruff-pre-commit
|
||||||
|
rev: v0.11.13
|
||||||
hooks:
|
hooks:
|
||||||
- id: black
|
- id: ruff
|
||||||
exclude: _builtin_templates.py
|
args: ["--fix"]
|
||||||
- repo: https://github.com/PyCQA/isort
|
- id: ruff-format
|
||||||
rev: 5.12.0
|
|
||||||
hooks:
|
|
||||||
- id: isort
|
|
||||||
exclude: _builtin_templates.py
|
|
||||||
|
675
LICENSE
Normal file
675
LICENSE
Normal file
@ -0,0 +1,675 @@
|
|||||||
|
# GNU GENERAL PUBLIC LICENSE
|
||||||
|
|
||||||
|
Version 3, 29 June 2007
|
||||||
|
|
||||||
|
Copyright (C) 2007 Free Software Foundation, Inc.
|
||||||
|
<https://fsf.org/>
|
||||||
|
|
||||||
|
Everyone is permitted to copy and distribute verbatim copies of this
|
||||||
|
license document, but changing it is not allowed.
|
||||||
|
|
||||||
|
## Preamble
|
||||||
|
|
||||||
|
The GNU General Public License is a free, copyleft license for
|
||||||
|
software and other kinds of works.
|
||||||
|
|
||||||
|
The licenses for most software and other practical works are designed
|
||||||
|
to take away your freedom to share and change the works. By contrast,
|
||||||
|
the GNU General Public License is intended to guarantee your freedom
|
||||||
|
to share and change all versions of a program--to make sure it remains
|
||||||
|
free software for all its users. We, the Free Software Foundation, use
|
||||||
|
the GNU General Public License for most of our software; it applies
|
||||||
|
also to any other work released this way by its authors. You can apply
|
||||||
|
it to your programs, too.
|
||||||
|
|
||||||
|
When we speak of free software, we are referring to freedom, not
|
||||||
|
price. Our General Public Licenses are designed to make sure that you
|
||||||
|
have the freedom to distribute copies of free software (and charge for
|
||||||
|
them if you wish), that you receive source code or can get it if you
|
||||||
|
want it, that you can change the software or use pieces of it in new
|
||||||
|
free programs, and that you know you can do these things.
|
||||||
|
|
||||||
|
To protect your rights, we need to prevent others from denying you
|
||||||
|
these rights or asking you to surrender the rights. Therefore, you
|
||||||
|
have certain responsibilities if you distribute copies of the
|
||||||
|
software, or if you modify it: responsibilities to respect the freedom
|
||||||
|
of others.
|
||||||
|
|
||||||
|
For example, if you distribute copies of such a program, whether
|
||||||
|
gratis or for a fee, you must pass on to the recipients the same
|
||||||
|
freedoms that you received. You must make sure that they, too, receive
|
||||||
|
or can get the source code. And you must show them these terms so they
|
||||||
|
know their rights.
|
||||||
|
|
||||||
|
Developers that use the GNU GPL protect your rights with two steps:
|
||||||
|
(1) assert copyright on the software, and (2) offer you this License
|
||||||
|
giving you legal permission to copy, distribute and/or modify it.
|
||||||
|
|
||||||
|
For the developers' and authors' protection, the GPL clearly explains
|
||||||
|
that there is no warranty for this free software. For both users' and
|
||||||
|
authors' sake, the GPL requires that modified versions be marked as
|
||||||
|
changed, so that their problems will not be attributed erroneously to
|
||||||
|
authors of previous versions.
|
||||||
|
|
||||||
|
Some devices are designed to deny users access to install or run
|
||||||
|
modified versions of the software inside them, although the
|
||||||
|
manufacturer can do so. This is fundamentally incompatible with the
|
||||||
|
aim of protecting users' freedom to change the software. The
|
||||||
|
systematic pattern of such abuse occurs in the area of products for
|
||||||
|
individuals to use, which is precisely where it is most unacceptable.
|
||||||
|
Therefore, we have designed this version of the GPL to prohibit the
|
||||||
|
practice for those products. If such problems arise substantially in
|
||||||
|
other domains, we stand ready to extend this provision to those
|
||||||
|
domains in future versions of the GPL, as needed to protect the
|
||||||
|
freedom of users.
|
||||||
|
|
||||||
|
Finally, every program is threatened constantly by software patents.
|
||||||
|
States should not allow patents to restrict development and use of
|
||||||
|
software on general-purpose computers, but in those that do, we wish
|
||||||
|
to avoid the special danger that patents applied to a free program
|
||||||
|
could make it effectively proprietary. To prevent this, the GPL
|
||||||
|
assures that patents cannot be used to render the program non-free.
|
||||||
|
|
||||||
|
The precise terms and conditions for copying, distribution and
|
||||||
|
modification follow.
|
||||||
|
|
||||||
|
## TERMS AND CONDITIONS
|
||||||
|
|
||||||
|
### 0. Definitions.
|
||||||
|
|
||||||
|
"This License" refers to version 3 of the GNU General Public License.
|
||||||
|
|
||||||
|
"Copyright" also means copyright-like laws that apply to other kinds
|
||||||
|
of works, such as semiconductor masks.
|
||||||
|
|
||||||
|
"The Program" refers to any copyrightable work licensed under this
|
||||||
|
License. Each licensee is addressed as "you". "Licensees" and
|
||||||
|
"recipients" may be individuals or organizations.
|
||||||
|
|
||||||
|
To "modify" a work means to copy from or adapt all or part of the work
|
||||||
|
in a fashion requiring copyright permission, other than the making of
|
||||||
|
an exact copy. The resulting work is called a "modified version" of
|
||||||
|
the earlier work or a work "based on" the earlier work.
|
||||||
|
|
||||||
|
A "covered work" means either the unmodified Program or a work based
|
||||||
|
on the Program.
|
||||||
|
|
||||||
|
To "propagate" a work means to do anything with it that, without
|
||||||
|
permission, would make you directly or secondarily liable for
|
||||||
|
infringement under applicable copyright law, except executing it on a
|
||||||
|
computer or modifying a private copy. Propagation includes copying,
|
||||||
|
distribution (with or without modification), making available to the
|
||||||
|
public, and in some countries other activities as well.
|
||||||
|
|
||||||
|
To "convey" a work means any kind of propagation that enables other
|
||||||
|
parties to make or receive copies. Mere interaction with a user
|
||||||
|
through a computer network, with no transfer of a copy, is not
|
||||||
|
conveying.
|
||||||
|
|
||||||
|
An interactive user interface displays "Appropriate Legal Notices" to
|
||||||
|
the extent that it includes a convenient and prominently visible
|
||||||
|
feature that (1) displays an appropriate copyright notice, and (2)
|
||||||
|
tells the user that there is no warranty for the work (except to the
|
||||||
|
extent that warranties are provided), that licensees may convey the
|
||||||
|
work under this License, and how to view a copy of this License. If
|
||||||
|
the interface presents a list of user commands or options, such as a
|
||||||
|
menu, a prominent item in the list meets this criterion.
|
||||||
|
|
||||||
|
### 1. Source Code.
|
||||||
|
|
||||||
|
The "source code" for a work means the preferred form of the work for
|
||||||
|
making modifications to it. "Object code" means any non-source form of
|
||||||
|
a work.
|
||||||
|
|
||||||
|
A "Standard Interface" means an interface that either is an official
|
||||||
|
standard defined by a recognized standards body, or, in the case of
|
||||||
|
interfaces specified for a particular programming language, one that
|
||||||
|
is widely used among developers working in that language.
|
||||||
|
|
||||||
|
The "System Libraries" of an executable work include anything, other
|
||||||
|
than the work as a whole, that (a) is included in the normal form of
|
||||||
|
packaging a Major Component, but which is not part of that Major
|
||||||
|
Component, and (b) serves only to enable use of the work with that
|
||||||
|
Major Component, or to implement a Standard Interface for which an
|
||||||
|
implementation is available to the public in source code form. A
|
||||||
|
"Major Component", in this context, means a major essential component
|
||||||
|
(kernel, window system, and so on) of the specific operating system
|
||||||
|
(if any) on which the executable work runs, or a compiler used to
|
||||||
|
produce the work, or an object code interpreter used to run it.
|
||||||
|
|
||||||
|
The "Corresponding Source" for a work in object code form means all
|
||||||
|
the source code needed to generate, install, and (for an executable
|
||||||
|
work) run the object code and to modify the work, including scripts to
|
||||||
|
control those activities. However, it does not include the work's
|
||||||
|
System Libraries, or general-purpose tools or generally available free
|
||||||
|
programs which are used unmodified in performing those activities but
|
||||||
|
which are not part of the work. For example, Corresponding Source
|
||||||
|
includes interface definition files associated with source files for
|
||||||
|
the work, and the source code for shared libraries and dynamically
|
||||||
|
linked subprograms that the work is specifically designed to require,
|
||||||
|
such as by intimate data communication or control flow between those
|
||||||
|
subprograms and other parts of the work.
|
||||||
|
|
||||||
|
The Corresponding Source need not include anything that users can
|
||||||
|
regenerate automatically from other parts of the Corresponding Source.
|
||||||
|
|
||||||
|
The Corresponding Source for a work in source code form is that same
|
||||||
|
work.
|
||||||
|
|
||||||
|
### 2. Basic Permissions.
|
||||||
|
|
||||||
|
All rights granted under this License are granted for the term of
|
||||||
|
copyright on the Program, and are irrevocable provided the stated
|
||||||
|
conditions are met. This License explicitly affirms your unlimited
|
||||||
|
permission to run the unmodified Program. The output from running a
|
||||||
|
covered work is covered by this License only if the output, given its
|
||||||
|
content, constitutes a covered work. This License acknowledges your
|
||||||
|
rights of fair use or other equivalent, as provided by copyright law.
|
||||||
|
|
||||||
|
You may make, run and propagate covered works that you do not convey,
|
||||||
|
without conditions so long as your license otherwise remains in force.
|
||||||
|
You may convey covered works to others for the sole purpose of having
|
||||||
|
them make modifications exclusively for you, or provide you with
|
||||||
|
facilities for running those works, provided that you comply with the
|
||||||
|
terms of this License in conveying all material for which you do not
|
||||||
|
control copyright. Those thus making or running the covered works for
|
||||||
|
you must do so exclusively on your behalf, under your direction and
|
||||||
|
control, on terms that prohibit them from making any copies of your
|
||||||
|
copyrighted material outside their relationship with you.
|
||||||
|
|
||||||
|
Conveying under any other circumstances is permitted solely under the
|
||||||
|
conditions stated below. Sublicensing is not allowed; section 10 makes
|
||||||
|
it unnecessary.
|
||||||
|
|
||||||
|
### 3. Protecting Users' Legal Rights From Anti-Circumvention Law.
|
||||||
|
|
||||||
|
No covered work shall be deemed part of an effective technological
|
||||||
|
measure under any applicable law fulfilling obligations under article
|
||||||
|
11 of the WIPO copyright treaty adopted on 20 December 1996, or
|
||||||
|
similar laws prohibiting or restricting circumvention of such
|
||||||
|
measures.
|
||||||
|
|
||||||
|
When you convey a covered work, you waive any legal power to forbid
|
||||||
|
circumvention of technological measures to the extent such
|
||||||
|
circumvention is effected by exercising rights under this License with
|
||||||
|
respect to the covered work, and you disclaim any intention to limit
|
||||||
|
operation or modification of the work as a means of enforcing, against
|
||||||
|
the work's users, your or third parties' legal rights to forbid
|
||||||
|
circumvention of technological measures.
|
||||||
|
|
||||||
|
### 4. Conveying Verbatim Copies.
|
||||||
|
|
||||||
|
You may convey verbatim copies of the Program's source code as you
|
||||||
|
receive it, in any medium, provided that you conspicuously and
|
||||||
|
appropriately publish on each copy an appropriate copyright notice;
|
||||||
|
keep intact all notices stating that this License and any
|
||||||
|
non-permissive terms added in accord with section 7 apply to the code;
|
||||||
|
keep intact all notices of the absence of any warranty; and give all
|
||||||
|
recipients a copy of this License along with the Program.
|
||||||
|
|
||||||
|
You may charge any price or no price for each copy that you convey,
|
||||||
|
and you may offer support or warranty protection for a fee.
|
||||||
|
|
||||||
|
### 5. Conveying Modified Source Versions.
|
||||||
|
|
||||||
|
You may convey a work based on the Program, or the modifications to
|
||||||
|
produce it from the Program, in the form of source code under the
|
||||||
|
terms of section 4, provided that you also meet all of these
|
||||||
|
conditions:
|
||||||
|
|
||||||
|
- a) The work must carry prominent notices stating that you modified
|
||||||
|
it, and giving a relevant date.
|
||||||
|
- b) The work must carry prominent notices stating that it is
|
||||||
|
released under this License and any conditions added under
|
||||||
|
section 7. This requirement modifies the requirement in section 4
|
||||||
|
to "keep intact all notices".
|
||||||
|
- c) You must license the entire work, as a whole, under this
|
||||||
|
License to anyone who comes into possession of a copy. This
|
||||||
|
License will therefore apply, along with any applicable section 7
|
||||||
|
additional terms, to the whole of the work, and all its parts,
|
||||||
|
regardless of how they are packaged. This License gives no
|
||||||
|
permission to license the work in any other way, but it does not
|
||||||
|
invalidate such permission if you have separately received it.
|
||||||
|
- d) If the work has interactive user interfaces, each must display
|
||||||
|
Appropriate Legal Notices; however, if the Program has interactive
|
||||||
|
interfaces that do not display Appropriate Legal Notices, your
|
||||||
|
work need not make them do so.
|
||||||
|
|
||||||
|
A compilation of a covered work with other separate and independent
|
||||||
|
works, which are not by their nature extensions of the covered work,
|
||||||
|
and which are not combined with it such as to form a larger program,
|
||||||
|
in or on a volume of a storage or distribution medium, is called an
|
||||||
|
"aggregate" if the compilation and its resulting copyright are not
|
||||||
|
used to limit the access or legal rights of the compilation's users
|
||||||
|
beyond what the individual works permit. Inclusion of a covered work
|
||||||
|
in an aggregate does not cause this License to apply to the other
|
||||||
|
parts of the aggregate.
|
||||||
|
|
||||||
|
### 6. Conveying Non-Source Forms.
|
||||||
|
|
||||||
|
You may convey a covered work in object code form under the terms of
|
||||||
|
sections 4 and 5, provided that you also convey the machine-readable
|
||||||
|
Corresponding Source under the terms of this License, in one of these
|
||||||
|
ways:
|
||||||
|
|
||||||
|
- a) Convey the object code in, or embodied in, a physical product
|
||||||
|
(including a physical distribution medium), accompanied by the
|
||||||
|
Corresponding Source fixed on a durable physical medium
|
||||||
|
customarily used for software interchange.
|
||||||
|
- b) Convey the object code in, or embodied in, a physical product
|
||||||
|
(including a physical distribution medium), accompanied by a
|
||||||
|
written offer, valid for at least three years and valid for as
|
||||||
|
long as you offer spare parts or customer support for that product
|
||||||
|
model, to give anyone who possesses the object code either (1) a
|
||||||
|
copy of the Corresponding Source for all the software in the
|
||||||
|
product that is covered by this License, on a durable physical
|
||||||
|
medium customarily used for software interchange, for a price no
|
||||||
|
more than your reasonable cost of physically performing this
|
||||||
|
conveying of source, or (2) access to copy the Corresponding
|
||||||
|
Source from a network server at no charge.
|
||||||
|
- c) Convey individual copies of the object code with a copy of the
|
||||||
|
written offer to provide the Corresponding Source. This
|
||||||
|
alternative is allowed only occasionally and noncommercially, and
|
||||||
|
only if you received the object code with such an offer, in accord
|
||||||
|
with subsection 6b.
|
||||||
|
- d) Convey the object code by offering access from a designated
|
||||||
|
place (gratis or for a charge), and offer equivalent access to the
|
||||||
|
Corresponding Source in the same way through the same place at no
|
||||||
|
further charge. You need not require recipients to copy the
|
||||||
|
Corresponding Source along with the object code. If the place to
|
||||||
|
copy the object code is a network server, the Corresponding Source
|
||||||
|
may be on a different server (operated by you or a third party)
|
||||||
|
that supports equivalent copying facilities, provided you maintain
|
||||||
|
clear directions next to the object code saying where to find the
|
||||||
|
Corresponding Source. Regardless of what server hosts the
|
||||||
|
Corresponding Source, you remain obligated to ensure that it is
|
||||||
|
available for as long as needed to satisfy these requirements.
|
||||||
|
- e) Convey the object code using peer-to-peer transmission,
|
||||||
|
provided you inform other peers where the object code and
|
||||||
|
Corresponding Source of the work are being offered to the general
|
||||||
|
public at no charge under subsection 6d.
|
||||||
|
|
||||||
|
A separable portion of the object code, whose source code is excluded
|
||||||
|
from the Corresponding Source as a System Library, need not be
|
||||||
|
included in conveying the object code work.
|
||||||
|
|
||||||
|
A "User Product" is either (1) a "consumer product", which means any
|
||||||
|
tangible personal property which is normally used for personal,
|
||||||
|
family, or household purposes, or (2) anything designed or sold for
|
||||||
|
incorporation into a dwelling. In determining whether a product is a
|
||||||
|
consumer product, doubtful cases shall be resolved in favor of
|
||||||
|
coverage. For a particular product received by a particular user,
|
||||||
|
"normally used" refers to a typical or common use of that class of
|
||||||
|
product, regardless of the status of the particular user or of the way
|
||||||
|
in which the particular user actually uses, or expects or is expected
|
||||||
|
to use, the product. A product is a consumer product regardless of
|
||||||
|
whether the product has substantial commercial, industrial or
|
||||||
|
non-consumer uses, unless such uses represent the only significant
|
||||||
|
mode of use of the product.
|
||||||
|
|
||||||
|
"Installation Information" for a User Product means any methods,
|
||||||
|
procedures, authorization keys, or other information required to
|
||||||
|
install and execute modified versions of a covered work in that User
|
||||||
|
Product from a modified version of its Corresponding Source. The
|
||||||
|
information must suffice to ensure that the continued functioning of
|
||||||
|
the modified object code is in no case prevented or interfered with
|
||||||
|
solely because modification has been made.
|
||||||
|
|
||||||
|
If you convey an object code work under this section in, or with, or
|
||||||
|
specifically for use in, a User Product, and the conveying occurs as
|
||||||
|
part of a transaction in which the right of possession and use of the
|
||||||
|
User Product is transferred to the recipient in perpetuity or for a
|
||||||
|
fixed term (regardless of how the transaction is characterized), the
|
||||||
|
Corresponding Source conveyed under this section must be accompanied
|
||||||
|
by the Installation Information. But this requirement does not apply
|
||||||
|
if neither you nor any third party retains the ability to install
|
||||||
|
modified object code on the User Product (for example, the work has
|
||||||
|
been installed in ROM).
|
||||||
|
|
||||||
|
The requirement to provide Installation Information does not include a
|
||||||
|
requirement to continue to provide support service, warranty, or
|
||||||
|
updates for a work that has been modified or installed by the
|
||||||
|
recipient, or for the User Product in which it has been modified or
|
||||||
|
installed. Access to a network may be denied when the modification
|
||||||
|
itself materially and adversely affects the operation of the network
|
||||||
|
or violates the rules and protocols for communication across the
|
||||||
|
network.
|
||||||
|
|
||||||
|
Corresponding Source conveyed, and Installation Information provided,
|
||||||
|
in accord with this section must be in a format that is publicly
|
||||||
|
documented (and with an implementation available to the public in
|
||||||
|
source code form), and must require no special password or key for
|
||||||
|
unpacking, reading or copying.
|
||||||
|
|
||||||
|
### 7. Additional Terms.
|
||||||
|
|
||||||
|
"Additional permissions" are terms that supplement the terms of this
|
||||||
|
License by making exceptions from one or more of its conditions.
|
||||||
|
Additional permissions that are applicable to the entire Program shall
|
||||||
|
be treated as though they were included in this License, to the extent
|
||||||
|
that they are valid under applicable law. If additional permissions
|
||||||
|
apply only to part of the Program, that part may be used separately
|
||||||
|
under those permissions, but the entire Program remains governed by
|
||||||
|
this License without regard to the additional permissions.
|
||||||
|
|
||||||
|
When you convey a copy of a covered work, you may at your option
|
||||||
|
remove any additional permissions from that copy, or from any part of
|
||||||
|
it. (Additional permissions may be written to require their own
|
||||||
|
removal in certain cases when you modify the work.) You may place
|
||||||
|
additional permissions on material, added by you to a covered work,
|
||||||
|
for which you have or can give appropriate copyright permission.
|
||||||
|
|
||||||
|
Notwithstanding any other provision of this License, for material you
|
||||||
|
add to a covered work, you may (if authorized by the copyright holders
|
||||||
|
of that material) supplement the terms of this License with terms:
|
||||||
|
|
||||||
|
- a) Disclaiming warranty or limiting liability differently from the
|
||||||
|
terms of sections 15 and 16 of this License; or
|
||||||
|
- b) Requiring preservation of specified reasonable legal notices or
|
||||||
|
author attributions in that material or in the Appropriate Legal
|
||||||
|
Notices displayed by works containing it; or
|
||||||
|
- c) Prohibiting misrepresentation of the origin of that material,
|
||||||
|
or requiring that modified versions of such material be marked in
|
||||||
|
reasonable ways as different from the original version; or
|
||||||
|
- d) Limiting the use for publicity purposes of names of licensors
|
||||||
|
or authors of the material; or
|
||||||
|
- e) Declining to grant rights under trademark law for use of some
|
||||||
|
trade names, trademarks, or service marks; or
|
||||||
|
- f) Requiring indemnification of licensors and authors of that
|
||||||
|
material by anyone who conveys the material (or modified versions
|
||||||
|
of it) with contractual assumptions of liability to the recipient,
|
||||||
|
for any liability that these contractual assumptions directly
|
||||||
|
impose on those licensors and authors.
|
||||||
|
|
||||||
|
All other non-permissive additional terms are considered "further
|
||||||
|
restrictions" within the meaning of section 10. If the Program as you
|
||||||
|
received it, or any part of it, contains a notice stating that it is
|
||||||
|
governed by this License along with a term that is a further
|
||||||
|
restriction, you may remove that term. If a license document contains
|
||||||
|
a further restriction but permits relicensing or conveying under this
|
||||||
|
License, you may add to a covered work material governed by the terms
|
||||||
|
of that license document, provided that the further restriction does
|
||||||
|
not survive such relicensing or conveying.
|
||||||
|
|
||||||
|
If you add terms to a covered work in accord with this section, you
|
||||||
|
must place, in the relevant source files, a statement of the
|
||||||
|
additional terms that apply to those files, or a notice indicating
|
||||||
|
where to find the applicable terms.
|
||||||
|
|
||||||
|
Additional terms, permissive or non-permissive, may be stated in the
|
||||||
|
form of a separately written license, or stated as exceptions; the
|
||||||
|
above requirements apply either way.
|
||||||
|
|
||||||
|
### 8. Termination.
|
||||||
|
|
||||||
|
You may not propagate or modify a covered work except as expressly
|
||||||
|
provided under this License. Any attempt otherwise to propagate or
|
||||||
|
modify it is void, and will automatically terminate your rights under
|
||||||
|
this License (including any patent licenses granted under the third
|
||||||
|
paragraph of section 11).
|
||||||
|
|
||||||
|
However, if you cease all violation of this License, then your license
|
||||||
|
from a particular copyright holder is reinstated (a) provisionally,
|
||||||
|
unless and until the copyright holder explicitly and finally
|
||||||
|
terminates your license, and (b) permanently, if the copyright holder
|
||||||
|
fails to notify you of the violation by some reasonable means prior to
|
||||||
|
60 days after the cessation.
|
||||||
|
|
||||||
|
Moreover, your license from a particular copyright holder is
|
||||||
|
reinstated permanently if the copyright holder notifies you of the
|
||||||
|
violation by some reasonable means, this is the first time you have
|
||||||
|
received notice of violation of this License (for any work) from that
|
||||||
|
copyright holder, and you cure the violation prior to 30 days after
|
||||||
|
your receipt of the notice.
|
||||||
|
|
||||||
|
Termination of your rights under this section does not terminate the
|
||||||
|
licenses of parties who have received copies or rights from you under
|
||||||
|
this License. If your rights have been terminated and not permanently
|
||||||
|
reinstated, you do not qualify to receive new licenses for the same
|
||||||
|
material under section 10.
|
||||||
|
|
||||||
|
### 9. Acceptance Not Required for Having Copies.
|
||||||
|
|
||||||
|
You are not required to accept this License in order to receive or run
|
||||||
|
a copy of the Program. Ancillary propagation of a covered work
|
||||||
|
occurring solely as a consequence of using peer-to-peer transmission
|
||||||
|
to receive a copy likewise does not require acceptance. However,
|
||||||
|
nothing other than this License grants you permission to propagate or
|
||||||
|
modify any covered work. These actions infringe copyright if you do
|
||||||
|
not accept this License. Therefore, by modifying or propagating a
|
||||||
|
covered work, you indicate your acceptance of this License to do so.
|
||||||
|
|
||||||
|
### 10. Automatic Licensing of Downstream Recipients.
|
||||||
|
|
||||||
|
Each time you convey a covered work, the recipient automatically
|
||||||
|
receives a license from the original licensors, to run, modify and
|
||||||
|
propagate that work, subject to this License. You are not responsible
|
||||||
|
for enforcing compliance by third parties with this License.
|
||||||
|
|
||||||
|
An "entity transaction" is a transaction transferring control of an
|
||||||
|
organization, or substantially all assets of one, or subdividing an
|
||||||
|
organization, or merging organizations. If propagation of a covered
|
||||||
|
work results from an entity transaction, each party to that
|
||||||
|
transaction who receives a copy of the work also receives whatever
|
||||||
|
licenses to the work the party's predecessor in interest had or could
|
||||||
|
give under the previous paragraph, plus a right to possession of the
|
||||||
|
Corresponding Source of the work from the predecessor in interest, if
|
||||||
|
the predecessor has it or can get it with reasonable efforts.
|
||||||
|
|
||||||
|
You may not impose any further restrictions on the exercise of the
|
||||||
|
rights granted or affirmed under this License. For example, you may
|
||||||
|
not impose a license fee, royalty, or other charge for exercise of
|
||||||
|
rights granted under this License, and you may not initiate litigation
|
||||||
|
(including a cross-claim or counterclaim in a lawsuit) alleging that
|
||||||
|
any patent claim is infringed by making, using, selling, offering for
|
||||||
|
sale, or importing the Program or any portion of it.
|
||||||
|
|
||||||
|
### 11. Patents.
|
||||||
|
|
||||||
|
A "contributor" is a copyright holder who authorizes use under this
|
||||||
|
License of the Program or a work on which the Program is based. The
|
||||||
|
work thus licensed is called the contributor's "contributor version".
|
||||||
|
|
||||||
|
A contributor's "essential patent claims" are all patent claims owned
|
||||||
|
or controlled by the contributor, whether already acquired or
|
||||||
|
hereafter acquired, that would be infringed by some manner, permitted
|
||||||
|
by this License, of making, using, or selling its contributor version,
|
||||||
|
but do not include claims that would be infringed only as a
|
||||||
|
consequence of further modification of the contributor version. For
|
||||||
|
purposes of this definition, "control" includes the right to grant
|
||||||
|
patent sublicenses in a manner consistent with the requirements of
|
||||||
|
this License.
|
||||||
|
|
||||||
|
Each contributor grants you a non-exclusive, worldwide, royalty-free
|
||||||
|
patent license under the contributor's essential patent claims, to
|
||||||
|
make, use, sell, offer for sale, import and otherwise run, modify and
|
||||||
|
propagate the contents of its contributor version.
|
||||||
|
|
||||||
|
In the following three paragraphs, a "patent license" is any express
|
||||||
|
agreement or commitment, however denominated, not to enforce a patent
|
||||||
|
(such as an express permission to practice a patent or covenant not to
|
||||||
|
sue for patent infringement). To "grant" such a patent license to a
|
||||||
|
party means to make such an agreement or commitment not to enforce a
|
||||||
|
patent against the party.
|
||||||
|
|
||||||
|
If you convey a covered work, knowingly relying on a patent license,
|
||||||
|
and the Corresponding Source of the work is not available for anyone
|
||||||
|
to copy, free of charge and under the terms of this License, through a
|
||||||
|
publicly available network server or other readily accessible means,
|
||||||
|
then you must either (1) cause the Corresponding Source to be so
|
||||||
|
available, or (2) arrange to deprive yourself of the benefit of the
|
||||||
|
patent license for this particular work, or (3) arrange, in a manner
|
||||||
|
consistent with the requirements of this License, to extend the patent
|
||||||
|
license to downstream recipients. "Knowingly relying" means you have
|
||||||
|
actual knowledge that, but for the patent license, your conveying the
|
||||||
|
covered work in a country, or your recipient's use of the covered work
|
||||||
|
in a country, would infringe one or more identifiable patents in that
|
||||||
|
country that you have reason to believe are valid.
|
||||||
|
|
||||||
|
If, pursuant to or in connection with a single transaction or
|
||||||
|
arrangement, you convey, or propagate by procuring conveyance of, a
|
||||||
|
covered work, and grant a patent license to some of the parties
|
||||||
|
receiving the covered work authorizing them to use, propagate, modify
|
||||||
|
or convey a specific copy of the covered work, then the patent license
|
||||||
|
you grant is automatically extended to all recipients of the covered
|
||||||
|
work and works based on it.
|
||||||
|
|
||||||
|
A patent license is "discriminatory" if it does not include within the
|
||||||
|
scope of its coverage, prohibits the exercise of, or is conditioned on
|
||||||
|
the non-exercise of one or more of the rights that are specifically
|
||||||
|
granted under this License. You may not convey a covered work if you
|
||||||
|
are a party to an arrangement with a third party that is in the
|
||||||
|
business of distributing software, under which you make payment to the
|
||||||
|
third party based on the extent of your activity of conveying the
|
||||||
|
work, and under which the third party grants, to any of the parties
|
||||||
|
who would receive the covered work from you, a discriminatory patent
|
||||||
|
license (a) in connection with copies of the covered work conveyed by
|
||||||
|
you (or copies made from those copies), or (b) primarily for and in
|
||||||
|
connection with specific products or compilations that contain the
|
||||||
|
covered work, unless you entered into that arrangement, or that patent
|
||||||
|
license was granted, prior to 28 March 2007.
|
||||||
|
|
||||||
|
Nothing in this License shall be construed as excluding or limiting
|
||||||
|
any implied license or other defenses to infringement that may
|
||||||
|
otherwise be available to you under applicable patent law.
|
||||||
|
|
||||||
|
### 12. No Surrender of Others' Freedom.
|
||||||
|
|
||||||
|
If conditions are imposed on you (whether by court order, agreement or
|
||||||
|
otherwise) that contradict the conditions of this License, they do not
|
||||||
|
excuse you from the conditions of this License. If you cannot convey a
|
||||||
|
covered work so as to satisfy simultaneously your obligations under
|
||||||
|
this License and any other pertinent obligations, then as a
|
||||||
|
consequence you may not convey it at all. For example, if you agree to
|
||||||
|
terms that obligate you to collect a royalty for further conveying
|
||||||
|
from those to whom you convey the Program, the only way you could
|
||||||
|
satisfy both those terms and this License would be to refrain entirely
|
||||||
|
from conveying the Program.
|
||||||
|
|
||||||
|
### 13. Use with the GNU Affero General Public License.
|
||||||
|
|
||||||
|
Notwithstanding any other provision of this License, you have
|
||||||
|
permission to link or combine any covered work with a work licensed
|
||||||
|
under version 3 of the GNU Affero General Public License into a single
|
||||||
|
combined work, and to convey the resulting work. The terms of this
|
||||||
|
License will continue to apply to the part which is the covered work,
|
||||||
|
but the special requirements of the GNU Affero General Public License,
|
||||||
|
section 13, concerning interaction through a network will apply to the
|
||||||
|
combination as such.
|
||||||
|
|
||||||
|
### 14. Revised Versions of this License.
|
||||||
|
|
||||||
|
The Free Software Foundation may publish revised and/or new versions
|
||||||
|
of the GNU General Public License from time to time. Such new versions
|
||||||
|
will be similar in spirit to the present version, but may differ in
|
||||||
|
detail to address new problems or concerns.
|
||||||
|
|
||||||
|
Each version is given a distinguishing version number. If the Program
|
||||||
|
specifies that a certain numbered version of the GNU General Public
|
||||||
|
License "or any later version" applies to it, you have the option of
|
||||||
|
following the terms and conditions either of that numbered version or
|
||||||
|
of any later version published by the Free Software Foundation. If the
|
||||||
|
Program does not specify a version number of the GNU General Public
|
||||||
|
License, you may choose any version ever published by the Free
|
||||||
|
Software Foundation.
|
||||||
|
|
||||||
|
If the Program specifies that a proxy can decide which future versions
|
||||||
|
of the GNU General Public License can be used, that proxy's public
|
||||||
|
statement of acceptance of a version permanently authorizes you to
|
||||||
|
choose that version for the Program.
|
||||||
|
|
||||||
|
Later license versions may give you additional or different
|
||||||
|
permissions. However, no additional obligations are imposed on any
|
||||||
|
author or copyright holder as a result of your choosing to follow a
|
||||||
|
later version.
|
||||||
|
|
||||||
|
### 15. Disclaimer of Warranty.
|
||||||
|
|
||||||
|
THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
|
||||||
|
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
|
||||||
|
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT
|
||||||
|
WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT
|
||||||
|
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
||||||
|
A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND
|
||||||
|
PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE
|
||||||
|
DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR
|
||||||
|
CORRECTION.
|
||||||
|
|
||||||
|
### 16. Limitation of Liability.
|
||||||
|
|
||||||
|
IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
|
||||||
|
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR
|
||||||
|
CONVEYS THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES,
|
||||||
|
INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES
|
||||||
|
ARISING OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT
|
||||||
|
NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR
|
||||||
|
LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM
|
||||||
|
TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER
|
||||||
|
PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
|
||||||
|
|
||||||
|
### 17. Interpretation of Sections 15 and 16.
|
||||||
|
|
||||||
|
If the disclaimer of warranty and limitation of liability provided
|
||||||
|
above cannot be given local legal effect according to their terms,
|
||||||
|
reviewing courts shall apply local law that most closely approximates
|
||||||
|
an absolute waiver of all civil liability in connection with the
|
||||||
|
Program, unless a warranty or assumption of liability accompanies a
|
||||||
|
copy of the Program in return for a fee.
|
||||||
|
|
||||||
|
END OF TERMS AND CONDITIONS
|
||||||
|
|
||||||
|
## How to Apply These Terms to Your New Programs
|
||||||
|
|
||||||
|
If you develop a new program, and you want it to be of the greatest
|
||||||
|
possible use to the public, the best way to achieve this is to make it
|
||||||
|
free software which everyone can redistribute and change under these
|
||||||
|
terms.
|
||||||
|
|
||||||
|
To do so, attach the following notices to the program. It is safest to
|
||||||
|
attach them to the start of each source file to most effectively state
|
||||||
|
the exclusion of warranty; and each file should have at least the
|
||||||
|
"copyright" line and a pointer to where the full notice is found.
|
||||||
|
|
||||||
|
<one line to give the program's name and a brief idea of what it does.>
|
||||||
|
Copyright (C) <year> <name of author>
|
||||||
|
|
||||||
|
This program is free software: you can redistribute it and/or modify
|
||||||
|
it under the terms of the GNU General Public License as published by
|
||||||
|
the Free Software Foundation, either version 3 of the License, or
|
||||||
|
(at your option) any later version.
|
||||||
|
|
||||||
|
This program is distributed in the hope that it will be useful,
|
||||||
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||||
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||||
|
GNU General Public License for more details.
|
||||||
|
|
||||||
|
You should have received a copy of the GNU General Public License
|
||||||
|
along with this program. If not, see <https://www.gnu.org/licenses/>.
|
||||||
|
|
||||||
|
Also add information on how to contact you by electronic and paper
|
||||||
|
mail.
|
||||||
|
|
||||||
|
If the program does terminal interaction, make it output a short
|
||||||
|
notice like this when it starts in an interactive mode:
|
||||||
|
|
||||||
|
<program> Copyright (C) <year> <name of author>
|
||||||
|
This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
|
||||||
|
This is free software, and you are welcome to redistribute it
|
||||||
|
under certain conditions; type `show c' for details.
|
||||||
|
|
||||||
|
The hypothetical commands \`show w' and \`show c' should show the
|
||||||
|
appropriate parts of the General Public License. Of course, your
|
||||||
|
program's commands might be different; for a GUI interface, you would
|
||||||
|
use an "about box".
|
||||||
|
|
||||||
|
You should also get your employer (if you work as a programmer) or
|
||||||
|
school, if any, to sign a "copyright disclaimer" for the program, if
|
||||||
|
necessary. For more information on this, and how to apply and follow
|
||||||
|
the GNU GPL, see <https://www.gnu.org/licenses/>.
|
||||||
|
|
||||||
|
The GNU General Public License does not permit incorporating your
|
||||||
|
program into proprietary programs. If your program is a subroutine
|
||||||
|
library, you may consider it more useful to permit linking proprietary
|
||||||
|
applications with the library. If this is what you want to do, use the
|
||||||
|
GNU Lesser General Public License instead of this License. But first,
|
||||||
|
please read <https://www.gnu.org/licenses/why-not-lgpl.html>.
|
47
README.md
47
README.md
@ -3,26 +3,49 @@
|
|||||||
## Example
|
## Example
|
||||||
|
|
||||||
```py
|
```py
|
||||||
from arcaea_offline_ocr.device.v2.rois import DeviceV2AutoRois
|
|
||||||
from arcaea_offline_ocr.device.v2.ocr import DeviceV2Ocr
|
|
||||||
from arcaea_offline_ocr.sift_db import SIFTDatabase
|
|
||||||
from arcaea_offline_ocr.utils import imread_unicode
|
|
||||||
import cv2
|
import cv2
|
||||||
|
from arcaea_offline_ocr.device.ocr import DeviceOcr
|
||||||
|
from arcaea_offline_ocr.device.rois.definition import DeviceRoisAutoT2
|
||||||
|
from arcaea_offline_ocr.device.rois.extractor import DeviceRoisExtractor
|
||||||
|
from arcaea_offline_ocr.device.rois.masker import DeviceRoisMaskerAutoT2
|
||||||
|
from arcaea_offline_ocr.phash_db import ImagePhashDatabase
|
||||||
|
|
||||||
knn_model = cv2.ml.KNearest_load(r'/path/to/knn/model')
|
img_path = "/path/to/opencv/supported/image/formats.jpg"
|
||||||
sift_db = SIFTDatabase(r'/path/to/sift/database.db')
|
img = cv2.imread(img_path, cv2.IMREAD_COLOR)
|
||||||
|
|
||||||
rois = DeviceV2AutoRois(imread_unicode(r'/path/to/your/screenshot.jpg')) # any format that opencv-python supports
|
rois = DeviceRoisAutoT2(img.shape[1], img.shape[0])
|
||||||
ocr = DeviceV2Ocr(knn_model, sift_db)
|
extractor = DeviceRoisExtractor(img, rois)
|
||||||
result = ocr.ocr(rois)
|
masker = DeviceRoisMaskerAutoT2()
|
||||||
print(result)
|
|
||||||
|
knn_model = cv2.ml.KNearest.load("/path/to/trained/knn/model.dat")
|
||||||
|
phash_db = ImagePhashDatabase("/path/to/image/phash/database.db")
|
||||||
|
|
||||||
|
ocr = DeviceOcr(extractor, masker, knn_model, phash_db)
|
||||||
|
print(ocr.ocr())
|
||||||
```
|
```
|
||||||
|
|
||||||
```sh
|
```sh
|
||||||
$ python example.py
|
$ python example.py
|
||||||
DeviceOcrResult(rating_class=2, pure=1371, far=62, lost=34, score=9558078, max_recall=330, song_id='abstrusedilemma', title=None, clear_type=None)
|
DeviceOcrResult(rating_class=2, pure=1135, far=11, lost=0, score=9953016, max_recall=1146, song_id='ringedgenesis', song_id_possibility=0.953125, clear_status=2, partner_id='45', partner_id_possibility=0.8046875)
|
||||||
```
|
```
|
||||||
|
|
||||||
|
## License
|
||||||
|
|
||||||
|
This file is part of arcaea-offline-ocr, as called "This program" below.
|
||||||
|
|
||||||
|
This program is free software: you can redistribute it and/or modify
|
||||||
|
it under the terms of the GNU General Public License as published by
|
||||||
|
the Free Software Foundation, either version 3 of the License, or
|
||||||
|
(at your option) any later version.
|
||||||
|
|
||||||
|
This program is distributed in the hope that it will be useful,
|
||||||
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||||
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||||
|
GNU General Public License for more details.
|
||||||
|
|
||||||
|
You should have received a copy of the GNU General Public License
|
||||||
|
along with this program. If not, see <https://www.gnu.org/licenses/>.
|
||||||
|
|
||||||
## Credits
|
## Credits
|
||||||
|
|
||||||
[283375/image-sift-database](https://github.com/283375/image-sift-database)
|
[283375/image-phash-database](https://github.com/283375/image-phash-database)
|
||||||
|
@ -1,23 +1,26 @@
|
|||||||
[build-system]
|
[build-system]
|
||||||
requires = ["setuptools>=61.0"]
|
requires = ["setuptools>=64", "setuptools-scm>=8"]
|
||||||
build-backend = "setuptools.build_meta"
|
build-backend = "setuptools.build_meta"
|
||||||
|
|
||||||
[project]
|
[project]
|
||||||
|
dynamic = ["version"]
|
||||||
|
|
||||||
name = "arcaea-offline-ocr"
|
name = "arcaea-offline-ocr"
|
||||||
version = "0.1.0"
|
|
||||||
authors = [{ name = "283375", email = "log_283375@163.com" }]
|
authors = [{ name = "283375", email = "log_283375@163.com" }]
|
||||||
description = "Extract your Arcaea play result from screenshot."
|
description = "Extract your Arcaea play result from screenshot."
|
||||||
readme = "README.md"
|
readme = "README.md"
|
||||||
requires-python = ">=3.8"
|
requires-python = ">=3.8"
|
||||||
dependencies = ["attrs==23.1.0", "numpy==1.25.2", "opencv-python==4.8.0.76"]
|
dependencies = ["attrs==23.1.0", "numpy==1.26.1", "opencv-python==4.8.1.78"]
|
||||||
classifiers = [
|
classifiers = [
|
||||||
"Development Status :: 3 - Alpha",
|
"Development Status :: 3 - Alpha",
|
||||||
"Programming Language :: Python :: 3",
|
"Programming Language :: Python :: 3",
|
||||||
]
|
]
|
||||||
|
|
||||||
[project.urls]
|
[project.urls]
|
||||||
"Homepage" = "https://github.com/283375/arcaea-offline-ocr"
|
"Homepage" = "https://github.com/ArcaeaOffline/core-ocr"
|
||||||
"Bug Tracker" = "https://github.com/283375/arcaea-offline-ocr/issues"
|
"Bug Tracker" = "https://github.com/ArcaeaOffline/core-ocr/issues"
|
||||||
|
|
||||||
|
[tool.setuptools_scm]
|
||||||
|
|
||||||
[tool.isort]
|
[tool.isort]
|
||||||
profile = "black"
|
profile = "black"
|
||||||
@ -25,3 +28,14 @@ src_paths = ["src/arcaea_offline_ocr"]
|
|||||||
|
|
||||||
[tool.pyright]
|
[tool.pyright]
|
||||||
ignore = ["**/__debug*.*"]
|
ignore = ["**/__debug*.*"]
|
||||||
|
|
||||||
|
[tool.pylint.main]
|
||||||
|
# extension-pkg-allow-list = ["cv2"]
|
||||||
|
generated-members = ["cv2.*"]
|
||||||
|
|
||||||
|
[tool.pylint.logging]
|
||||||
|
disable = [
|
||||||
|
"missing-module-docstring",
|
||||||
|
"missing-class-docstring",
|
||||||
|
"missing-function-docstring",
|
||||||
|
]
|
||||||
|
@ -1,3 +1,2 @@
|
|||||||
attrs==23.1.0
|
numpy~=2.3
|
||||||
numpy==1.25.2
|
opencv-python~=4.11
|
||||||
opencv-python==4.8.0.76
|
|
||||||
|
@ -1,5 +0,0 @@
|
|||||||
from .crop import *
|
|
||||||
from .device import *
|
|
||||||
from .mask import *
|
|
||||||
from .ocr import *
|
|
||||||
from .utils import *
|
|
||||||
|
@ -1,16 +0,0 @@
|
|||||||
from datetime import datetime
|
|
||||||
from typing import Optional, Union
|
|
||||||
|
|
||||||
import attrs
|
|
||||||
|
|
||||||
|
|
||||||
@attrs.define
|
|
||||||
class B30OcrResultItem:
|
|
||||||
rating_class: int
|
|
||||||
score: int
|
|
||||||
pure: Optional[int] = None
|
|
||||||
far: Optional[int] = None
|
|
||||||
lost: Optional[int] = None
|
|
||||||
date: Optional[datetime] = None
|
|
||||||
title: Optional[str] = None
|
|
||||||
song_id: Optional[str] = None
|
|
6
src/arcaea_offline_ocr/builders/__init__.py
Normal file
6
src/arcaea_offline_ocr/builders/__init__.py
Normal file
@ -0,0 +1,6 @@
|
|||||||
|
from .ihdb import ImageHashDatabaseBuildTask, ImageHashesDatabaseBuilder
|
||||||
|
|
||||||
|
__all__ = [
|
||||||
|
"ImageHashDatabaseBuildTask",
|
||||||
|
"ImageHashesDatabaseBuilder",
|
||||||
|
]
|
112
src/arcaea_offline_ocr/builders/ihdb.py
Normal file
112
src/arcaea_offline_ocr/builders/ihdb.py
Normal file
@ -0,0 +1,112 @@
|
|||||||
|
from dataclasses import dataclass
|
||||||
|
from datetime import datetime, timezone
|
||||||
|
from typing import TYPE_CHECKING, Callable, List
|
||||||
|
|
||||||
|
import cv2
|
||||||
|
|
||||||
|
from arcaea_offline_ocr.core import hashers
|
||||||
|
from arcaea_offline_ocr.providers import ImageCategory
|
||||||
|
from arcaea_offline_ocr.providers.ihdb import (
|
||||||
|
PROP_KEY_BUILT_AT,
|
||||||
|
PROP_KEY_HASH_SIZE,
|
||||||
|
PROP_KEY_HIGH_FREQ_FACTOR,
|
||||||
|
ImageHashDatabaseIdProvider,
|
||||||
|
ImageHashType,
|
||||||
|
)
|
||||||
|
|
||||||
|
if TYPE_CHECKING:
|
||||||
|
from sqlite3 import Connection
|
||||||
|
|
||||||
|
from arcaea_offline_ocr.types import Mat
|
||||||
|
|
||||||
|
|
||||||
|
def _default_imread_gray(image_path: str):
|
||||||
|
return cv2.cvtColor(cv2.imread(image_path, cv2.IMREAD_COLOR), cv2.COLOR_BGR2GRAY)
|
||||||
|
|
||||||
|
|
||||||
|
@dataclass
|
||||||
|
class ImageHashDatabaseBuildTask:
|
||||||
|
image_path: str
|
||||||
|
image_id: str
|
||||||
|
category: ImageCategory
|
||||||
|
imread_function: Callable[[str], "Mat"] = _default_imread_gray
|
||||||
|
|
||||||
|
|
||||||
|
@dataclass
|
||||||
|
class _ImageHash:
|
||||||
|
image_id: str
|
||||||
|
category: ImageCategory
|
||||||
|
image_hash_type: ImageHashType
|
||||||
|
hash: bytes
|
||||||
|
|
||||||
|
|
||||||
|
class ImageHashesDatabaseBuilder:
|
||||||
|
@staticmethod
|
||||||
|
def __insert_property(conn: "Connection", key: str, value: str):
|
||||||
|
return conn.execute(
|
||||||
|
"INSERT INTO properties (key, value) VALUES (?, ?)",
|
||||||
|
(key, value),
|
||||||
|
)
|
||||||
|
|
||||||
|
@classmethod
|
||||||
|
def build(
|
||||||
|
cls,
|
||||||
|
conn: "Connection",
|
||||||
|
tasks: List[ImageHashDatabaseBuildTask],
|
||||||
|
*,
|
||||||
|
hash_size: int = 16,
|
||||||
|
high_freq_factor: int = 4,
|
||||||
|
):
|
||||||
|
hashes: List[_ImageHash] = []
|
||||||
|
|
||||||
|
for task in tasks:
|
||||||
|
img_gray = task.imread_function(task.image_path)
|
||||||
|
|
||||||
|
for hash_type, hash_mat in [
|
||||||
|
(
|
||||||
|
ImageHashType.AVERAGE,
|
||||||
|
hashers.average(img_gray, hash_size),
|
||||||
|
),
|
||||||
|
(
|
||||||
|
ImageHashType.DCT,
|
||||||
|
hashers.dct(img_gray, hash_size, high_freq_factor),
|
||||||
|
),
|
||||||
|
(
|
||||||
|
ImageHashType.DIFFERENCE,
|
||||||
|
hashers.difference(img_gray, hash_size),
|
||||||
|
),
|
||||||
|
]:
|
||||||
|
hashes.append(
|
||||||
|
_ImageHash(
|
||||||
|
image_id=task.image_id,
|
||||||
|
image_hash_type=hash_type,
|
||||||
|
category=task.category,
|
||||||
|
hash=ImageHashDatabaseIdProvider.hash_mat_to_bytes(hash_mat),
|
||||||
|
)
|
||||||
|
)
|
||||||
|
|
||||||
|
conn.execute("CREATE TABLE properties (`key` VARCHAR, `value` VARCHAR)")
|
||||||
|
conn.execute(
|
||||||
|
"""CREATE TABLE hashes (
|
||||||
|
`id` VARCHAR,
|
||||||
|
`category` INTEGER,
|
||||||
|
`hash_type` INTEGER,
|
||||||
|
`hash` BLOB
|
||||||
|
)"""
|
||||||
|
)
|
||||||
|
|
||||||
|
now = datetime.now(tz=timezone.utc)
|
||||||
|
timestamp = int(now.timestamp() * 1000)
|
||||||
|
|
||||||
|
cls.__insert_property(conn, PROP_KEY_HASH_SIZE, str(hash_size))
|
||||||
|
cls.__insert_property(conn, PROP_KEY_HIGH_FREQ_FACTOR, str(high_freq_factor))
|
||||||
|
cls.__insert_property(conn, PROP_KEY_BUILT_AT, str(timestamp))
|
||||||
|
|
||||||
|
conn.executemany(
|
||||||
|
"INSERT INTO hashes (`id`, `category`, `hash_type`, `hash`) VALUES (?, ?, ?, ?)",
|
||||||
|
[
|
||||||
|
(it.image_id, it.category.value, it.image_hash_type.value, it.hash)
|
||||||
|
for it in hashes
|
||||||
|
],
|
||||||
|
)
|
||||||
|
conn.commit()
|
3
src/arcaea_offline_ocr/core/hashers/__init__.py
Normal file
3
src/arcaea_offline_ocr/core/hashers/__init__.py
Normal file
@ -0,0 +1,3 @@
|
|||||||
|
from .index import average, dct, difference
|
||||||
|
|
||||||
|
__all__ = ["average", "dct", "difference"]
|
7
src/arcaea_offline_ocr/core/hashers/_common.py
Normal file
7
src/arcaea_offline_ocr/core/hashers/_common.py
Normal file
@ -0,0 +1,7 @@
|
|||||||
|
import cv2
|
||||||
|
|
||||||
|
from arcaea_offline_ocr.types import Mat
|
||||||
|
|
||||||
|
|
||||||
|
def _resize_image(src: Mat, dsize: ...) -> Mat:
|
||||||
|
return cv2.resize(src, dsize, fx=0, fy=0, interpolation=cv2.INTER_AREA)
|
35
src/arcaea_offline_ocr/core/hashers/index.py
Normal file
35
src/arcaea_offline_ocr/core/hashers/index.py
Normal file
@ -0,0 +1,35 @@
|
|||||||
|
import cv2
|
||||||
|
import numpy as np
|
||||||
|
|
||||||
|
from arcaea_offline_ocr.types import Mat
|
||||||
|
|
||||||
|
from ._common import _resize_image
|
||||||
|
|
||||||
|
|
||||||
|
def average(img_gray: Mat, hash_size: int) -> Mat:
|
||||||
|
img_resized = _resize_image(img_gray, (hash_size, hash_size))
|
||||||
|
diff = img_resized > img_resized.mean()
|
||||||
|
return diff.flatten()
|
||||||
|
|
||||||
|
|
||||||
|
def difference(img_gray: Mat, hash_size: int) -> Mat:
|
||||||
|
img_size = (hash_size + 1, hash_size)
|
||||||
|
img_resized = _resize_image(img_gray, img_size)
|
||||||
|
|
||||||
|
previous = img_resized[:, :-1]
|
||||||
|
current = img_resized[:, 1:]
|
||||||
|
diff = previous > current
|
||||||
|
return diff.flatten()
|
||||||
|
|
||||||
|
|
||||||
|
def dct(img_gray: Mat, hash_size: int = 16, high_freq_factor: int = 4) -> Mat:
|
||||||
|
# TODO: consistency?
|
||||||
|
img_size_base = hash_size * high_freq_factor
|
||||||
|
img_size = (img_size_base, img_size_base)
|
||||||
|
|
||||||
|
img_resized = _resize_image(img_gray, img_size)
|
||||||
|
img_resized = img_resized.astype(np.float32)
|
||||||
|
dct_mat = cv2.dct(img_resized)
|
||||||
|
|
||||||
|
hash_mat = dct_mat[:hash_size, :hash_size]
|
||||||
|
return hash_mat > hash_mat.mean()
|
@ -1,11 +1,12 @@
|
|||||||
from math import floor
|
import math
|
||||||
from typing import Tuple
|
from typing import Tuple
|
||||||
|
|
||||||
|
import cv2
|
||||||
import numpy as np
|
import numpy as np
|
||||||
|
|
||||||
from .types import Mat
|
from .types import Mat
|
||||||
|
|
||||||
__all__ = ["crop_xywh", "crop_black_edges", "crop_black_edges_grayscale"]
|
__all__ = ["crop_xywh", "CropBlackEdges"]
|
||||||
|
|
||||||
|
|
||||||
def crop_xywh(mat: Mat, rect: Tuple[int, int, int, int]):
|
def crop_xywh(mat: Mat, rect: Tuple[int, int, int, int]):
|
||||||
@ -13,92 +14,53 @@ def crop_xywh(mat: Mat, rect: Tuple[int, int, int, int]):
|
|||||||
return mat[y : y + h, x : x + w]
|
return mat[y : y + h, x : x + w]
|
||||||
|
|
||||||
|
|
||||||
def is_black_edge(list_of_pixels: Mat, black_pixel: Mat, ratio: float = 0.6):
|
class CropBlackEdges:
|
||||||
pixels = list_of_pixels.reshape([-1, 3])
|
@staticmethod
|
||||||
return np.count_nonzero(np.all(pixels < black_pixel, axis=1)) > floor(
|
def is_black_edge(__img_gray_slice: Mat, black_pixel: int, ratio: float = 0.6):
|
||||||
len(pixels) * ratio
|
pixels_compared = __img_gray_slice < black_pixel
|
||||||
)
|
return np.count_nonzero(pixels_compared) > math.floor(
|
||||||
|
__img_gray_slice.size * ratio
|
||||||
|
)
|
||||||
|
|
||||||
|
@classmethod
|
||||||
|
def get_crop_rect(cls, img_gray: Mat, black_threshold: int = 25):
|
||||||
|
height, width = img_gray.shape[:2]
|
||||||
|
left = 0
|
||||||
|
right = width
|
||||||
|
top = 0
|
||||||
|
bottom = height
|
||||||
|
|
||||||
def crop_black_edges(img_bgr: Mat, black_threshold: int = 50):
|
for i in range(width):
|
||||||
cropped = img_bgr.copy()
|
column = img_gray[:, i]
|
||||||
black_pixel = np.array([black_threshold] * 3, img_bgr.dtype)
|
if not cls.is_black_edge(column, black_threshold):
|
||||||
height, width = img_bgr.shape[:2]
|
break
|
||||||
left = 0
|
left += 1
|
||||||
right = width
|
|
||||||
top = 0
|
|
||||||
bottom = height
|
|
||||||
|
|
||||||
for i in range(width):
|
for i in sorted(range(width), reverse=True):
|
||||||
column = cropped[:, i]
|
column = img_gray[:, i]
|
||||||
if not is_black_edge(column, black_pixel):
|
if i <= left + 1 or not cls.is_black_edge(column, black_threshold):
|
||||||
break
|
break
|
||||||
left += 1
|
right -= 1
|
||||||
|
|
||||||
for i in sorted(range(width), reverse=True):
|
for i in range(height):
|
||||||
column = cropped[:, i]
|
row = img_gray[i]
|
||||||
if i <= left + 1 or not is_black_edge(column, black_pixel):
|
if not cls.is_black_edge(row, black_threshold):
|
||||||
break
|
break
|
||||||
right -= 1
|
top += 1
|
||||||
|
|
||||||
for i in range(height):
|
for i in sorted(range(height), reverse=True):
|
||||||
row = cropped[i]
|
row = img_gray[i]
|
||||||
if not is_black_edge(row, black_pixel):
|
if i <= top + 1 or not cls.is_black_edge(row, black_threshold):
|
||||||
break
|
break
|
||||||
top += 1
|
bottom -= 1
|
||||||
|
|
||||||
for i in sorted(range(height), reverse=True):
|
assert right > left, "cropped width < 0"
|
||||||
row = cropped[i]
|
assert bottom > top, "cropped height < 0"
|
||||||
if i <= top + 1 or not is_black_edge(row, black_pixel):
|
return (left, top, right - left, bottom - top)
|
||||||
break
|
|
||||||
bottom -= 1
|
|
||||||
|
|
||||||
return cropped[top:bottom, left:right]
|
@classmethod
|
||||||
|
def crop(
|
||||||
|
cls, img: Mat, convert_flag: cv2.COLOR_BGR2GRAY, black_threshold: int = 25
|
||||||
def is_black_edge_grayscale(
|
) -> Mat:
|
||||||
gray_value_list: np.ndarray, black_threshold: int = 50, ratio: float = 0.6
|
rect = cls.get_crop_rect(cv2.cvtColor(img, convert_flag), black_threshold)
|
||||||
) -> bool:
|
return crop_xywh(img, rect)
|
||||||
return (
|
|
||||||
np.count_nonzero(gray_value_list < black_threshold)
|
|
||||||
> len(gray_value_list) * ratio
|
|
||||||
)
|
|
||||||
|
|
||||||
|
|
||||||
def crop_black_edges_grayscale(
|
|
||||||
img_gray: Mat, black_threshold: int = 50
|
|
||||||
) -> Tuple[int, int, int, int]:
|
|
||||||
"""Returns cropped rect"""
|
|
||||||
height, width = img_gray.shape[:2]
|
|
||||||
left = 0
|
|
||||||
right = width
|
|
||||||
top = 0
|
|
||||||
bottom = height
|
|
||||||
|
|
||||||
for i in range(width):
|
|
||||||
column = img_gray[:, i]
|
|
||||||
if not is_black_edge_grayscale(column, black_threshold):
|
|
||||||
break
|
|
||||||
left += 1
|
|
||||||
|
|
||||||
for i in sorted(range(width), reverse=True):
|
|
||||||
column = img_gray[:, i]
|
|
||||||
if i <= left + 1 or not is_black_edge_grayscale(column, black_threshold):
|
|
||||||
break
|
|
||||||
right -= 1
|
|
||||||
|
|
||||||
for i in range(height):
|
|
||||||
row = img_gray[i]
|
|
||||||
if not is_black_edge_grayscale(row, black_threshold):
|
|
||||||
break
|
|
||||||
top += 1
|
|
||||||
|
|
||||||
for i in sorted(range(height), reverse=True):
|
|
||||||
row = img_gray[i]
|
|
||||||
if i <= top + 1 or not is_black_edge_grayscale(row, black_threshold):
|
|
||||||
break
|
|
||||||
bottom -= 1
|
|
||||||
|
|
||||||
assert right > left, "cropped width > 0"
|
|
||||||
assert bottom > top, "cropped height > 0"
|
|
||||||
return (left, top, right - left, bottom - top)
|
|
||||||
|
@ -1,16 +0,0 @@
|
|||||||
from typing import Optional
|
|
||||||
|
|
||||||
import attrs
|
|
||||||
|
|
||||||
|
|
||||||
@attrs.define
|
|
||||||
class DeviceOcrResult:
|
|
||||||
rating_class: int
|
|
||||||
pure: int
|
|
||||||
far: int
|
|
||||||
lost: int
|
|
||||||
score: int
|
|
||||||
max_recall: int
|
|
||||||
song_id: Optional[str] = None
|
|
||||||
title: Optional[str] = None
|
|
||||||
clear_type: Optional[str] = None
|
|
@ -1,53 +0,0 @@
|
|||||||
from typing import Tuple
|
|
||||||
|
|
||||||
from ...types import Mat
|
|
||||||
from .definition import DeviceV1
|
|
||||||
|
|
||||||
__all__ = [
|
|
||||||
"crop_img",
|
|
||||||
"crop_from_device_attr",
|
|
||||||
"crop_to_pure",
|
|
||||||
"crop_to_far",
|
|
||||||
"crop_to_lost",
|
|
||||||
"crop_to_max_recall",
|
|
||||||
"crop_to_rating_class",
|
|
||||||
"crop_to_score",
|
|
||||||
"crop_to_title",
|
|
||||||
]
|
|
||||||
|
|
||||||
|
|
||||||
def crop_img(img: Mat, *, top: int, left: int, bottom: int, right: int):
|
|
||||||
return img[top:bottom, left:right]
|
|
||||||
|
|
||||||
|
|
||||||
def crop_from_device_attr(img: Mat, rect: Tuple[int, int, int, int]):
|
|
||||||
x, y, w, h = rect
|
|
||||||
return crop_img(img, top=y, left=x, bottom=y + h, right=x + w)
|
|
||||||
|
|
||||||
|
|
||||||
def crop_to_pure(screenshot: Mat, device: DeviceV1):
|
|
||||||
return crop_from_device_attr(screenshot, device.pure)
|
|
||||||
|
|
||||||
|
|
||||||
def crop_to_far(screenshot: Mat, device: DeviceV1):
|
|
||||||
return crop_from_device_attr(screenshot, device.far)
|
|
||||||
|
|
||||||
|
|
||||||
def crop_to_lost(screenshot: Mat, device: DeviceV1):
|
|
||||||
return crop_from_device_attr(screenshot, device.lost)
|
|
||||||
|
|
||||||
|
|
||||||
def crop_to_max_recall(screenshot: Mat, device: DeviceV1):
|
|
||||||
return crop_from_device_attr(screenshot, device.max_recall)
|
|
||||||
|
|
||||||
|
|
||||||
def crop_to_rating_class(screenshot: Mat, device: DeviceV1):
|
|
||||||
return crop_from_device_attr(screenshot, device.rating_class)
|
|
||||||
|
|
||||||
|
|
||||||
def crop_to_score(screenshot: Mat, device: DeviceV1):
|
|
||||||
return crop_from_device_attr(screenshot, device.score)
|
|
||||||
|
|
||||||
|
|
||||||
def crop_to_title(screenshot: Mat, device: DeviceV1):
|
|
||||||
return crop_from_device_attr(screenshot, device.title)
|
|
@ -1,37 +0,0 @@
|
|||||||
from dataclasses import dataclass
|
|
||||||
from typing import Any, Dict, Tuple
|
|
||||||
|
|
||||||
__all__ = ["DeviceV1"]
|
|
||||||
|
|
||||||
|
|
||||||
@dataclass(kw_only=True)
|
|
||||||
class DeviceV1:
|
|
||||||
version: int
|
|
||||||
uuid: str
|
|
||||||
name: str
|
|
||||||
pure: Tuple[int, int, int, int]
|
|
||||||
far: Tuple[int, int, int, int]
|
|
||||||
lost: Tuple[int, int, int, int]
|
|
||||||
max_recall: Tuple[int, int, int, int]
|
|
||||||
rating_class: Tuple[int, int, int, int]
|
|
||||||
score: Tuple[int, int, int, int]
|
|
||||||
title: Tuple[int, int, int, int]
|
|
||||||
|
|
||||||
@classmethod
|
|
||||||
def from_json_object(cls, json_dict: Dict[str, Any]):
|
|
||||||
if json_dict["version"] == 1:
|
|
||||||
return cls(
|
|
||||||
version=1,
|
|
||||||
uuid=json_dict["uuid"],
|
|
||||||
name=json_dict["name"],
|
|
||||||
pure=json_dict["pure"],
|
|
||||||
far=json_dict["far"],
|
|
||||||
lost=json_dict["lost"],
|
|
||||||
max_recall=json_dict["max_recall"],
|
|
||||||
rating_class=json_dict["rating_class"],
|
|
||||||
score=json_dict["score"],
|
|
||||||
title=json_dict["title"],
|
|
||||||
)
|
|
||||||
|
|
||||||
def repr_info(self):
|
|
||||||
return f"Device(version={self.version}, uuid={repr(self.uuid)}, name={repr(self.name)})"
|
|
@ -1,86 +0,0 @@
|
|||||||
from typing import List
|
|
||||||
|
|
||||||
import cv2
|
|
||||||
|
|
||||||
from ...crop import crop_xywh
|
|
||||||
from ...mask import mask_gray, mask_white
|
|
||||||
from ...ocr import ocr_digits_by_contour_knn, ocr_rating_class
|
|
||||||
from ...types import Mat, cv2_ml_KNearest
|
|
||||||
from ..shared import DeviceOcrResult
|
|
||||||
from .crop import *
|
|
||||||
from .definition import DeviceV1
|
|
||||||
|
|
||||||
|
|
||||||
class DeviceV1Ocr:
|
|
||||||
def __init__(self, device: DeviceV1, knn_model: cv2_ml_KNearest):
|
|
||||||
self.__device = device
|
|
||||||
self.__knn_model = knn_model
|
|
||||||
|
|
||||||
@property
|
|
||||||
def device(self):
|
|
||||||
return self.__device
|
|
||||||
|
|
||||||
@device.setter
|
|
||||||
def device(self, value):
|
|
||||||
self.__device = value
|
|
||||||
|
|
||||||
@property
|
|
||||||
def knn_model(self):
|
|
||||||
return self.__knn_model
|
|
||||||
|
|
||||||
@knn_model.setter
|
|
||||||
def knn_model(self, value):
|
|
||||||
self.__knn_model = value
|
|
||||||
|
|
||||||
def preprocess_score_roi(self, __roi_gray: Mat) -> List[Mat]:
|
|
||||||
roi_gray = __roi_gray.copy()
|
|
||||||
contours, _ = cv2.findContours(
|
|
||||||
roi_gray, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE
|
|
||||||
)
|
|
||||||
for contour in contours:
|
|
||||||
rect = cv2.boundingRect(contour)
|
|
||||||
if rect[3] > roi_gray.shape[0] * 0.6:
|
|
||||||
continue
|
|
||||||
roi_gray = cv2.fillPoly(roi_gray, [contour], 0)
|
|
||||||
return roi_gray
|
|
||||||
|
|
||||||
def ocr(self, img_bgr: Mat):
|
|
||||||
rating_class_roi = crop_to_rating_class(img_bgr, self.device)
|
|
||||||
rating_class = ocr_rating_class(rating_class_roi)
|
|
||||||
|
|
||||||
pfl_mr_roi = [
|
|
||||||
crop_to_pure(img_bgr, self.device),
|
|
||||||
crop_to_far(img_bgr, self.device),
|
|
||||||
crop_to_lost(img_bgr, self.device),
|
|
||||||
crop_to_max_recall(img_bgr, self.device),
|
|
||||||
]
|
|
||||||
pfl_mr_roi = [mask_gray(roi) for roi in pfl_mr_roi]
|
|
||||||
|
|
||||||
pure, far, lost = [
|
|
||||||
ocr_digits_by_contour_knn(roi, self.knn_model) for roi in pfl_mr_roi[:3]
|
|
||||||
]
|
|
||||||
|
|
||||||
max_recall_contours, _ = cv2.findContours(
|
|
||||||
pfl_mr_roi[3], cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE
|
|
||||||
)
|
|
||||||
max_recall_rects = [cv2.boundingRect(c) for c in max_recall_contours]
|
|
||||||
max_recall_rect = sorted(max_recall_rects, key=lambda r: r[0])[-1]
|
|
||||||
max_recall_roi = crop_xywh(img_bgr, max_recall_rect)
|
|
||||||
max_recall = ocr_digits_by_contour_knn(max_recall_roi, self.knn_model)
|
|
||||||
|
|
||||||
score_roi = crop_to_score(img_bgr, self.device)
|
|
||||||
score_roi = mask_white(score_roi)
|
|
||||||
score_roi = self.preprocess_score_roi(score_roi)
|
|
||||||
score = ocr_digits_by_contour_knn(score_roi, self.knn_model)
|
|
||||||
|
|
||||||
return DeviceOcrResult(
|
|
||||||
song_id=None,
|
|
||||||
title=None,
|
|
||||||
rating_class=rating_class,
|
|
||||||
pure=pure,
|
|
||||||
far=far,
|
|
||||||
lost=lost,
|
|
||||||
score=score,
|
|
||||||
max_recall=max_recall,
|
|
||||||
clear_type=None,
|
|
||||||
)
|
|
@ -1,4 +0,0 @@
|
|||||||
from .definition import DeviceV2
|
|
||||||
from .ocr import DeviceV2Ocr
|
|
||||||
from .rois import DeviceV2AutoRois, DeviceV2Rois
|
|
||||||
from .shared import MAX_RECALL_CLOSE_KERNEL
|
|
@ -1,26 +0,0 @@
|
|||||||
from typing import Iterable
|
|
||||||
|
|
||||||
from attrs import define, field
|
|
||||||
|
|
||||||
from ...types import XYWHRect
|
|
||||||
|
|
||||||
|
|
||||||
def iterable_to_xywh_rect(__iter: Iterable) -> XYWHRect:
|
|
||||||
return XYWHRect(*__iter)
|
|
||||||
|
|
||||||
|
|
||||||
@define(kw_only=True)
|
|
||||||
class DeviceV2:
|
|
||||||
version = field(type=int)
|
|
||||||
uuid = field(type=str)
|
|
||||||
name = field(type=str)
|
|
||||||
crop_black_edges = field(type=bool)
|
|
||||||
factor = field(type=float)
|
|
||||||
pure = field(converter=iterable_to_xywh_rect, default=[0, 0, 0, 0])
|
|
||||||
far = field(converter=iterable_to_xywh_rect, default=[0, 0, 0, 0])
|
|
||||||
lost = field(converter=iterable_to_xywh_rect, default=[0, 0, 0, 0])
|
|
||||||
score = field(converter=iterable_to_xywh_rect, default=[0, 0, 0, 0])
|
|
||||||
max_recall_rating_class = field(
|
|
||||||
converter=iterable_to_xywh_rect, default=[0, 0, 0, 0]
|
|
||||||
)
|
|
||||||
title = field(converter=iterable_to_xywh_rect, default=[0, 0, 0, 0])
|
|
@ -1,172 +0,0 @@
|
|||||||
import math
|
|
||||||
from functools import lru_cache
|
|
||||||
from typing import Sequence
|
|
||||||
|
|
||||||
import cv2
|
|
||||||
import numpy as np
|
|
||||||
from PIL import Image
|
|
||||||
|
|
||||||
from ...crop import crop_xywh
|
|
||||||
from ...mask import (
|
|
||||||
mask_byd,
|
|
||||||
mask_ftr,
|
|
||||||
mask_gray,
|
|
||||||
mask_max_recall_purple,
|
|
||||||
mask_pfl_white,
|
|
||||||
mask_prs,
|
|
||||||
mask_pst,
|
|
||||||
mask_white,
|
|
||||||
)
|
|
||||||
from ...ocr import (
|
|
||||||
FixRects,
|
|
||||||
ocr_digit_samples_knn,
|
|
||||||
ocr_digits_by_contour_knn,
|
|
||||||
preprocess_hog,
|
|
||||||
resize_fill_square,
|
|
||||||
)
|
|
||||||
from ...phash_db import ImagePHashDatabase
|
|
||||||
from ...sift_db import SIFTDatabase
|
|
||||||
from ...types import Mat, cv2_ml_KNearest
|
|
||||||
from ..shared import DeviceOcrResult
|
|
||||||
from .preprocess import find_digits_preprocess
|
|
||||||
from .rois import DeviceV2Rois
|
|
||||||
from .shared import MAX_RECALL_CLOSE_KERNEL
|
|
||||||
from .sizes import SizesV2
|
|
||||||
|
|
||||||
|
|
||||||
class DeviceV2Ocr:
|
|
||||||
def __init__(self, knn_model: cv2_ml_KNearest, phash_db: ImagePHashDatabase):
|
|
||||||
self.__knn_model = knn_model
|
|
||||||
self.__phash_db = phash_db
|
|
||||||
|
|
||||||
@property
|
|
||||||
def knn_model(self):
|
|
||||||
if not self.__knn_model:
|
|
||||||
raise ValueError("`knn_model` unset.")
|
|
||||||
return self.__knn_model
|
|
||||||
|
|
||||||
@knn_model.setter
|
|
||||||
def knn_model(self, value: cv2_ml_KNearest):
|
|
||||||
self.__knn_model = value
|
|
||||||
|
|
||||||
@property
|
|
||||||
def phash_db(self):
|
|
||||||
if not self.__phash_db:
|
|
||||||
raise ValueError("`phash_db` unset.")
|
|
||||||
return self.__phash_db
|
|
||||||
|
|
||||||
@phash_db.setter
|
|
||||||
def phash_db(self, value: SIFTDatabase):
|
|
||||||
self.__phash_db = value
|
|
||||||
|
|
||||||
@lru_cache
|
|
||||||
def _get_digit_widths(self, num_list: Sequence[int], factor: float):
|
|
||||||
widths = set()
|
|
||||||
for n in num_list:
|
|
||||||
lower = math.floor(n * factor)
|
|
||||||
upper = math.ceil(n * factor)
|
|
||||||
widths.update(range(lower, upper + 1))
|
|
||||||
return widths
|
|
||||||
|
|
||||||
def _base_ocr_pfl(self, roi_masked: Mat, factor: float = 1.0):
|
|
||||||
contours, _ = cv2.findContours(
|
|
||||||
roi_masked, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE
|
|
||||||
)
|
|
||||||
filtered_contours = [c for c in contours if cv2.contourArea(c) >= 5 * factor]
|
|
||||||
rects = [cv2.boundingRect(c) for c in filtered_contours]
|
|
||||||
rects = FixRects.connect_broken(rects, roi_masked.shape[1], roi_masked.shape[0])
|
|
||||||
rect_contour_map = dict(zip(rects, filtered_contours))
|
|
||||||
|
|
||||||
filtered_rects = [r for r in rects if r[2] >= 5 * factor and r[3] >= 6 * factor]
|
|
||||||
filtered_rects = FixRects.split_connected(roi_masked, filtered_rects)
|
|
||||||
filtered_rects = sorted(filtered_rects, key=lambda r: r[0])
|
|
||||||
|
|
||||||
roi_ocr = roi_masked.copy()
|
|
||||||
filtered_contours_flattened = {tuple(c.flatten()) for c in filtered_contours}
|
|
||||||
for contour in contours:
|
|
||||||
if tuple(contour.flatten()) in filtered_contours_flattened:
|
|
||||||
continue
|
|
||||||
roi_ocr = cv2.fillPoly(roi_ocr, [contour], [0])
|
|
||||||
digit_rois = [
|
|
||||||
resize_fill_square(crop_xywh(roi_ocr, r), 20)
|
|
||||||
for r in sorted(filtered_rects, key=lambda r: r[0])
|
|
||||||
]
|
|
||||||
# [cv2.imshow(f"r{i}", r) for i, r in enumerate(digit_rois)]
|
|
||||||
# cv2.waitKey(0)
|
|
||||||
samples = preprocess_hog(digit_rois)
|
|
||||||
return ocr_digit_samples_knn(samples, self.knn_model)
|
|
||||||
|
|
||||||
def ocr_song_id(self, rois: DeviceV2Rois):
|
|
||||||
jacket = cv2.cvtColor(rois.jacket, cv2.COLOR_BGR2GRAY)
|
|
||||||
return self.phash_db.lookup_image(Image.fromarray(jacket))[0]
|
|
||||||
|
|
||||||
def ocr_rating_class(self, rois: DeviceV2Rois):
|
|
||||||
roi = cv2.cvtColor(rois.max_recall_rating_class, cv2.COLOR_BGR2HSV)
|
|
||||||
results = [mask_pst(roi), mask_prs(roi), mask_ftr(roi), mask_byd(roi)]
|
|
||||||
return max(enumerate(results), key=lambda i: np.count_nonzero(i[1]))[0]
|
|
||||||
|
|
||||||
def ocr_score(self, rois: DeviceV2Rois):
|
|
||||||
roi = cv2.cvtColor(rois.score, cv2.COLOR_BGR2HSV)
|
|
||||||
roi = mask_white(roi)
|
|
||||||
contours, _ = cv2.findContours(roi, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
|
|
||||||
for contour in contours:
|
|
||||||
x, y, w, h = cv2.boundingRect(contour)
|
|
||||||
if h < roi.shape[0] * 0.6:
|
|
||||||
roi = cv2.fillPoly(roi, [contour], [0])
|
|
||||||
return ocr_digits_by_contour_knn(roi, self.knn_model)
|
|
||||||
|
|
||||||
def mask_pfl(self, pfl_roi: Mat, rois: DeviceV2Rois):
|
|
||||||
return (
|
|
||||||
mask_pfl_white(cv2.cvtColor(pfl_roi, cv2.COLOR_BGR2HSV))
|
|
||||||
if isinstance(rois.sizes, SizesV2)
|
|
||||||
else mask_gray(pfl_roi)
|
|
||||||
)
|
|
||||||
|
|
||||||
def ocr_pure(self, rois: DeviceV2Rois):
|
|
||||||
roi = self.mask_pfl(rois.pure, rois)
|
|
||||||
return self._base_ocr_pfl(roi, rois.sizes.factor)
|
|
||||||
|
|
||||||
def ocr_far(self, rois: DeviceV2Rois):
|
|
||||||
roi = self.mask_pfl(rois.far, rois)
|
|
||||||
return self._base_ocr_pfl(roi, rois.sizes.factor)
|
|
||||||
|
|
||||||
def ocr_lost(self, rois: DeviceV2Rois):
|
|
||||||
roi = self.mask_pfl(rois.lost, rois)
|
|
||||||
return self._base_ocr_pfl(roi, rois.sizes.factor)
|
|
||||||
|
|
||||||
def ocr_max_recall(self, rois: DeviceV2Rois):
|
|
||||||
roi = (
|
|
||||||
mask_max_recall_purple(
|
|
||||||
cv2.cvtColor(rois.max_recall_rating_class, cv2.COLOR_BGR2HSV)
|
|
||||||
)
|
|
||||||
if isinstance(rois.sizes, SizesV2)
|
|
||||||
else mask_gray(rois.max_recall_rating_class)
|
|
||||||
)
|
|
||||||
roi_closed = cv2.morphologyEx(roi, cv2.MORPH_CLOSE, MAX_RECALL_CLOSE_KERNEL)
|
|
||||||
contours, _ = cv2.findContours(
|
|
||||||
roi_closed, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE
|
|
||||||
)
|
|
||||||
rects = sorted(
|
|
||||||
[cv2.boundingRect(c) for c in contours], key=lambda r: r[0], reverse=True
|
|
||||||
)
|
|
||||||
max_recall_roi = crop_xywh(roi, rects[0])
|
|
||||||
return ocr_digits_by_contour_knn(max_recall_roi, self.knn_model)
|
|
||||||
|
|
||||||
def ocr(self, rois: DeviceV2Rois):
|
|
||||||
song_id = self.ocr_song_id(rois)
|
|
||||||
rating_class = self.ocr_rating_class(rois)
|
|
||||||
score = self.ocr_score(rois)
|
|
||||||
pure = self.ocr_pure(rois)
|
|
||||||
far = self.ocr_far(rois)
|
|
||||||
lost = self.ocr_lost(rois)
|
|
||||||
max_recall = self.ocr_max_recall(rois)
|
|
||||||
|
|
||||||
return DeviceOcrResult(
|
|
||||||
rating_class=rating_class,
|
|
||||||
pure=pure,
|
|
||||||
far=far,
|
|
||||||
lost=lost,
|
|
||||||
score=score,
|
|
||||||
max_recall=max_recall,
|
|
||||||
song_id=song_id,
|
|
||||||
)
|
|
@ -1,54 +0,0 @@
|
|||||||
import cv2
|
|
||||||
|
|
||||||
from ...types import Mat
|
|
||||||
from .shared import *
|
|
||||||
|
|
||||||
|
|
||||||
def find_digits_preprocess(__img_masked: Mat) -> Mat:
|
|
||||||
img = __img_masked.copy()
|
|
||||||
img_denoised = cv2.morphologyEx(img, cv2.MORPH_OPEN, PFL_DENOISE_KERNEL)
|
|
||||||
# img_denoised = cv2.bitwise_and(img, img_denoised)
|
|
||||||
|
|
||||||
denoise_contours, _ = cv2.findContours(
|
|
||||||
img_denoised, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE
|
|
||||||
)
|
|
||||||
# cv2.drawContours(img_denoised, contours, -1, [128], 2)
|
|
||||||
|
|
||||||
# fill all contour.area < max(contour.area) * ratio with black pixels
|
|
||||||
# for denoise purposes
|
|
||||||
|
|
||||||
# define threshold contour area
|
|
||||||
# we assume the smallest digit "1", is 80% height of the image,
|
|
||||||
# and at least 1.5 pixel wide, considering cv2.contourArea always
|
|
||||||
# returns a smaller value than the actual contour area.
|
|
||||||
max_contour_area = __img_masked.shape[0] * 0.8 * 1.5
|
|
||||||
filtered_contours = list(
|
|
||||||
filter(lambda c: cv2.contourArea(c) >= max_contour_area, denoise_contours)
|
|
||||||
)
|
|
||||||
|
|
||||||
filtered_contours_flattened = {tuple(c.flatten()) for c in filtered_contours}
|
|
||||||
|
|
||||||
for contour in denoise_contours:
|
|
||||||
if tuple(contour.flatten()) not in filtered_contours_flattened:
|
|
||||||
img_denoised = cv2.fillPoly(img_denoised, [contour], [0])
|
|
||||||
|
|
||||||
# old algorithm, finding the largest contour area
|
|
||||||
## contour_area_tuples = [(contour, cv2.contourArea(contour)) for contour in contours]
|
|
||||||
## contour_area_tuples = sorted(
|
|
||||||
## contour_area_tuples, key=lambda item: item[1], reverse=True
|
|
||||||
## )
|
|
||||||
## max_contour_area = contour_area_tuples[0][1]
|
|
||||||
## print(max_contour_area, [item[1] for item in contour_area_tuples])
|
|
||||||
## contours_filter_end_index = len(contours)
|
|
||||||
## for i, item in enumerate(contour_area_tuples):
|
|
||||||
## contour, area = item
|
|
||||||
## if area < max_contour_area * 0.15:
|
|
||||||
## contours_filter_end_index = i
|
|
||||||
## break
|
|
||||||
## contours = [item[0] for item in contour_area_tuples]
|
|
||||||
## for contour in contours[-contours_filter_end_index - 1:]:
|
|
||||||
## img = cv2.fillPoly(img, [contour], [0])
|
|
||||||
## img_denoised = cv2.fillPoly(img_denoised, [contour], [0])
|
|
||||||
## contours = contours[:contours_filter_end_index]
|
|
||||||
|
|
||||||
return img_denoised
|
|
@ -1,199 +0,0 @@
|
|||||||
from typing import Union
|
|
||||||
|
|
||||||
from ...crop import crop_black_edges, crop_xywh
|
|
||||||
from ...types import Mat, XYWHRect
|
|
||||||
from .definition import DeviceV2
|
|
||||||
from .sizes import Sizes, SizesV1
|
|
||||||
|
|
||||||
|
|
||||||
def to_int(num: Union[int, float]) -> int:
|
|
||||||
return round(num)
|
|
||||||
|
|
||||||
|
|
||||||
class DeviceV2Rois:
|
|
||||||
def __init__(self, device: DeviceV2, img: Mat):
|
|
||||||
self.device = device
|
|
||||||
self.sizes = SizesV1(self.device.factor)
|
|
||||||
self.__img = img
|
|
||||||
|
|
||||||
@staticmethod
|
|
||||||
def construct_int_xywh_rect(x, y, w, h) -> XYWHRect:
|
|
||||||
return XYWHRect(*[to_int(item) for item in [x, y, w, h]])
|
|
||||||
|
|
||||||
@property
|
|
||||||
def img(self):
|
|
||||||
return self.__img
|
|
||||||
|
|
||||||
@img.setter
|
|
||||||
def img(self, img: Mat):
|
|
||||||
self.__img = (
|
|
||||||
crop_black_edges(img) if self.device.crop_black_edges else img.copy()
|
|
||||||
)
|
|
||||||
|
|
||||||
@property
|
|
||||||
def h(self):
|
|
||||||
return self.img.shape[0]
|
|
||||||
|
|
||||||
@property
|
|
||||||
def vmid(self):
|
|
||||||
return self.h / 2
|
|
||||||
|
|
||||||
@property
|
|
||||||
def w(self):
|
|
||||||
return self.img.shape[1]
|
|
||||||
|
|
||||||
@property
|
|
||||||
def hmid(self):
|
|
||||||
return self.w / 2
|
|
||||||
|
|
||||||
@property
|
|
||||||
def h_without_top_bar(self):
|
|
||||||
"""img_height -= top_bar_height"""
|
|
||||||
return self.h - self.sizes.TOP_BAR_HEIGHT
|
|
||||||
|
|
||||||
@property
|
|
||||||
def h_without_top_bar_mid(self):
|
|
||||||
return self.sizes.TOP_BAR_HEIGHT + self.h_without_top_bar / 2
|
|
||||||
|
|
||||||
@property
|
|
||||||
def pfl_top(self):
|
|
||||||
return self.h_without_top_bar_mid + self.sizes.PFL_TOP_FROM_VMID
|
|
||||||
|
|
||||||
@property
|
|
||||||
def pfl_left(self):
|
|
||||||
return self.hmid + self.sizes.PFL_LEFT_FROM_HMID
|
|
||||||
|
|
||||||
@property
|
|
||||||
def pure_rect(self):
|
|
||||||
return self.construct_int_xywh_rect(
|
|
||||||
x=self.pfl_left,
|
|
||||||
y=self.pfl_top,
|
|
||||||
w=self.sizes.PFL_WIDTH,
|
|
||||||
h=self.sizes.PFL_FONT_PX,
|
|
||||||
)
|
|
||||||
|
|
||||||
@property
|
|
||||||
def pure(self):
|
|
||||||
return crop_xywh(self.img, self.pure_rect)
|
|
||||||
|
|
||||||
@property
|
|
||||||
def far_rect(self):
|
|
||||||
return self.construct_int_xywh_rect(
|
|
||||||
x=self.pfl_left,
|
|
||||||
y=self.pfl_top + self.sizes.PFL_FONT_PX + self.sizes.PURE_FAR_GAP,
|
|
||||||
w=self.sizes.PFL_WIDTH,
|
|
||||||
h=self.sizes.PFL_FONT_PX,
|
|
||||||
)
|
|
||||||
|
|
||||||
@property
|
|
||||||
def far(self):
|
|
||||||
return crop_xywh(self.img, self.far_rect)
|
|
||||||
|
|
||||||
@property
|
|
||||||
def lost_rect(self):
|
|
||||||
return self.construct_int_xywh_rect(
|
|
||||||
x=self.pfl_left,
|
|
||||||
y=(
|
|
||||||
self.pfl_top
|
|
||||||
+ self.sizes.PFL_FONT_PX * 2
|
|
||||||
+ self.sizes.PURE_FAR_GAP
|
|
||||||
+ self.sizes.FAR_LOST_GAP
|
|
||||||
),
|
|
||||||
w=self.sizes.PFL_WIDTH,
|
|
||||||
h=self.sizes.PFL_FONT_PX,
|
|
||||||
)
|
|
||||||
|
|
||||||
@property
|
|
||||||
def lost(self):
|
|
||||||
return crop_xywh(self.img, self.lost_rect)
|
|
||||||
|
|
||||||
@property
|
|
||||||
def score_rect(self):
|
|
||||||
return self.construct_int_xywh_rect(
|
|
||||||
x=self.hmid - (self.sizes.SCORE_WIDTH / 2),
|
|
||||||
y=(
|
|
||||||
self.h_without_top_bar_mid
|
|
||||||
+ self.sizes.SCORE_BOTTOM_FROM_VMID
|
|
||||||
- self.sizes.SCORE_FONT_PX
|
|
||||||
),
|
|
||||||
w=self.sizes.SCORE_WIDTH,
|
|
||||||
h=self.sizes.SCORE_FONT_PX,
|
|
||||||
)
|
|
||||||
|
|
||||||
@property
|
|
||||||
def score(self):
|
|
||||||
return crop_xywh(self.img, self.score_rect)
|
|
||||||
|
|
||||||
@property
|
|
||||||
def max_recall_rating_class_rect(self):
|
|
||||||
x = (
|
|
||||||
self.hmid
|
|
||||||
+ self.sizes.JACKET_RIGHT_FROM_HOR_MID
|
|
||||||
- self.sizes.JACKET_WIDTH
|
|
||||||
- 25 * self.sizes.factor
|
|
||||||
)
|
|
||||||
return self.construct_int_xywh_rect(
|
|
||||||
x=x,
|
|
||||||
y=(
|
|
||||||
self.h_without_top_bar_mid
|
|
||||||
- self.sizes.SCORE_PANEL[1] / 2
|
|
||||||
- self.sizes.MR_RT_HEIGHT
|
|
||||||
),
|
|
||||||
w=self.sizes.MR_RT_WIDTH,
|
|
||||||
h=self.sizes.MR_RT_HEIGHT,
|
|
||||||
)
|
|
||||||
|
|
||||||
@property
|
|
||||||
def max_recall_rating_class(self):
|
|
||||||
return crop_xywh(self.img, self.max_recall_rating_class_rect)
|
|
||||||
|
|
||||||
@property
|
|
||||||
def title_rect(self):
|
|
||||||
return self.construct_int_xywh_rect(
|
|
||||||
x=0,
|
|
||||||
y=self.h_without_top_bar_mid
|
|
||||||
+ self.sizes.TITLE_BOTTOM_FROM_VMID
|
|
||||||
- self.sizes.TITLE_FONT_PX,
|
|
||||||
w=self.hmid + self.sizes.TITLE_WIDTH_RIGHT,
|
|
||||||
h=self.sizes.TITLE_FONT_PX,
|
|
||||||
)
|
|
||||||
|
|
||||||
@property
|
|
||||||
def title(self):
|
|
||||||
return crop_xywh(self.img, self.title_rect)
|
|
||||||
|
|
||||||
@property
|
|
||||||
def jacket_rect(self):
|
|
||||||
return self.construct_int_xywh_rect(
|
|
||||||
x=self.hmid
|
|
||||||
+ self.sizes.JACKET_RIGHT_FROM_HOR_MID
|
|
||||||
- self.sizes.JACKET_WIDTH,
|
|
||||||
y=self.h_without_top_bar_mid - self.sizes.SCORE_PANEL[1] / 2,
|
|
||||||
w=self.sizes.JACKET_WIDTH,
|
|
||||||
h=self.sizes.JACKET_WIDTH,
|
|
||||||
)
|
|
||||||
|
|
||||||
@property
|
|
||||||
def jacket(self):
|
|
||||||
return crop_xywh(self.img, self.jacket_rect)
|
|
||||||
|
|
||||||
|
|
||||||
class DeviceV2AutoRois(DeviceV2Rois):
|
|
||||||
@staticmethod
|
|
||||||
def get_factor(width: int, height: int):
|
|
||||||
ratio = width / height
|
|
||||||
return ((width / 16) * 9) / 720 if ratio < (16 / 9) else height / 720
|
|
||||||
|
|
||||||
def __init__(self, img: Mat):
|
|
||||||
factor = self.get_factor(img.shape[1], img.shape[0])
|
|
||||||
self.sizes = SizesV1(factor)
|
|
||||||
self.__img = None
|
|
||||||
self.img = img
|
|
||||||
|
|
||||||
@property
|
|
||||||
def img(self):
|
|
||||||
return self.__img
|
|
||||||
|
|
||||||
@img.setter
|
|
||||||
def img(self, img: Mat):
|
|
||||||
self.__img = crop_black_edges(img)
|
|
@ -1,9 +0,0 @@
|
|||||||
from cv2 import MORPH_RECT, getStructuringElement
|
|
||||||
|
|
||||||
PFL_DENOISE_KERNEL = getStructuringElement(MORPH_RECT, [2, 2])
|
|
||||||
PFL_ERODE_KERNEL = getStructuringElement(MORPH_RECT, [3, 3])
|
|
||||||
PFL_CLOSE_HORIZONTAL_KERNEL = getStructuringElement(MORPH_RECT, [10, 1])
|
|
||||||
|
|
||||||
MAX_RECALL_DENOISE_KERNEL = getStructuringElement(MORPH_RECT, [3, 3])
|
|
||||||
MAX_RECALL_ERODE_KERNEL = getStructuringElement(MORPH_RECT, [2, 2])
|
|
||||||
MAX_RECALL_CLOSE_KERNEL = getStructuringElement(MORPH_RECT, [20, 1])
|
|
@ -1,254 +0,0 @@
|
|||||||
from typing import Tuple, Union
|
|
||||||
|
|
||||||
|
|
||||||
def apply_factor(num: Union[int, float], factor: float):
|
|
||||||
return num * factor
|
|
||||||
|
|
||||||
|
|
||||||
class Sizes:
|
|
||||||
def __init__(self, factor: float):
|
|
||||||
raise NotImplementedError()
|
|
||||||
|
|
||||||
@property
|
|
||||||
def TOP_BAR_HEIGHT(self):
|
|
||||||
...
|
|
||||||
|
|
||||||
@property
|
|
||||||
def SCORE_PANEL(self) -> Tuple[int, int]:
|
|
||||||
...
|
|
||||||
|
|
||||||
@property
|
|
||||||
def PFL_TOP_FROM_VMID(self):
|
|
||||||
...
|
|
||||||
|
|
||||||
@property
|
|
||||||
def PFL_LEFT_FROM_HMID(self):
|
|
||||||
...
|
|
||||||
|
|
||||||
@property
|
|
||||||
def PFL_WIDTH(self):
|
|
||||||
...
|
|
||||||
|
|
||||||
@property
|
|
||||||
def PFL_FONT_PX(self):
|
|
||||||
...
|
|
||||||
|
|
||||||
@property
|
|
||||||
def PURE_FAR_GAP(self):
|
|
||||||
...
|
|
||||||
|
|
||||||
@property
|
|
||||||
def FAR_LOST_GAP(self):
|
|
||||||
...
|
|
||||||
|
|
||||||
@property
|
|
||||||
def SCORE_BOTTOM_FROM_VMID(self):
|
|
||||||
...
|
|
||||||
|
|
||||||
@property
|
|
||||||
def SCORE_FONT_PX(self):
|
|
||||||
...
|
|
||||||
|
|
||||||
@property
|
|
||||||
def SCORE_WIDTH(self):
|
|
||||||
...
|
|
||||||
|
|
||||||
@property
|
|
||||||
def JACKET_RIGHT_FROM_HOR_MID(self):
|
|
||||||
...
|
|
||||||
|
|
||||||
@property
|
|
||||||
def JACKET_WIDTH(self):
|
|
||||||
...
|
|
||||||
|
|
||||||
@property
|
|
||||||
def MR_RT_RIGHT_FROM_HMID(self):
|
|
||||||
...
|
|
||||||
|
|
||||||
@property
|
|
||||||
def MR_RT_WIDTH(self):
|
|
||||||
...
|
|
||||||
|
|
||||||
@property
|
|
||||||
def MR_RT_HEIGHT(self):
|
|
||||||
...
|
|
||||||
|
|
||||||
@property
|
|
||||||
def TITLE_BOTTOM_FROM_VMID(self):
|
|
||||||
...
|
|
||||||
|
|
||||||
@property
|
|
||||||
def TITLE_FONT_PX(self):
|
|
||||||
...
|
|
||||||
|
|
||||||
@property
|
|
||||||
def TITLE_WIDTH_RIGHT(self):
|
|
||||||
...
|
|
||||||
|
|
||||||
|
|
||||||
class SizesV1(Sizes):
|
|
||||||
def __init__(self, factor: float):
|
|
||||||
self.factor = factor
|
|
||||||
|
|
||||||
def apply_factor(self, num):
|
|
||||||
return apply_factor(num, self.factor)
|
|
||||||
|
|
||||||
@property
|
|
||||||
def TOP_BAR_HEIGHT(self):
|
|
||||||
return self.apply_factor(50)
|
|
||||||
|
|
||||||
@property
|
|
||||||
def SCORE_PANEL(self) -> Tuple[int, int]:
|
|
||||||
return tuple(self.apply_factor(num) for num in [485, 239])
|
|
||||||
|
|
||||||
@property
|
|
||||||
def PFL_TOP_FROM_VMID(self):
|
|
||||||
return self.apply_factor(135)
|
|
||||||
|
|
||||||
@property
|
|
||||||
def PFL_LEFT_FROM_HMID(self):
|
|
||||||
return self.apply_factor(5)
|
|
||||||
|
|
||||||
@property
|
|
||||||
def PFL_WIDTH(self):
|
|
||||||
return self.apply_factor(76)
|
|
||||||
|
|
||||||
@property
|
|
||||||
def PFL_FONT_PX(self):
|
|
||||||
return self.apply_factor(26)
|
|
||||||
|
|
||||||
@property
|
|
||||||
def PURE_FAR_GAP(self):
|
|
||||||
return self.apply_factor(12)
|
|
||||||
|
|
||||||
@property
|
|
||||||
def FAR_LOST_GAP(self):
|
|
||||||
return self.apply_factor(10)
|
|
||||||
|
|
||||||
@property
|
|
||||||
def SCORE_BOTTOM_FROM_VMID(self):
|
|
||||||
return self.apply_factor(-50)
|
|
||||||
|
|
||||||
@property
|
|
||||||
def SCORE_FONT_PX(self):
|
|
||||||
return self.apply_factor(45)
|
|
||||||
|
|
||||||
@property
|
|
||||||
def SCORE_WIDTH(self):
|
|
||||||
return self.apply_factor(280)
|
|
||||||
|
|
||||||
@property
|
|
||||||
def JACKET_RIGHT_FROM_HOR_MID(self):
|
|
||||||
return self.apply_factor(-235)
|
|
||||||
|
|
||||||
@property
|
|
||||||
def JACKET_WIDTH(self):
|
|
||||||
return self.apply_factor(375)
|
|
||||||
|
|
||||||
@property
|
|
||||||
def MR_RT_RIGHT_FROM_HMID(self):
|
|
||||||
return self.apply_factor(-300)
|
|
||||||
|
|
||||||
@property
|
|
||||||
def MR_RT_WIDTH(self):
|
|
||||||
return self.apply_factor(275)
|
|
||||||
|
|
||||||
@property
|
|
||||||
def MR_RT_HEIGHT(self):
|
|
||||||
return self.apply_factor(75)
|
|
||||||
|
|
||||||
@property
|
|
||||||
def TITLE_BOTTOM_FROM_VMID(self):
|
|
||||||
return self.apply_factor(-265)
|
|
||||||
|
|
||||||
@property
|
|
||||||
def TITLE_FONT_PX(self):
|
|
||||||
return self.apply_factor(40)
|
|
||||||
|
|
||||||
@property
|
|
||||||
def TITLE_WIDTH_RIGHT(self):
|
|
||||||
return self.apply_factor(275)
|
|
||||||
|
|
||||||
|
|
||||||
class SizesV2(Sizes):
|
|
||||||
def __init__(self, factor: float):
|
|
||||||
self.factor = factor
|
|
||||||
|
|
||||||
def apply_factor(self, num):
|
|
||||||
return apply_factor(num, self.factor)
|
|
||||||
|
|
||||||
@property
|
|
||||||
def TOP_BAR_HEIGHT(self):
|
|
||||||
return self.apply_factor(50)
|
|
||||||
|
|
||||||
@property
|
|
||||||
def SCORE_PANEL(self) -> Tuple[int, int]:
|
|
||||||
return tuple(self.apply_factor(num) for num in [447, 233])
|
|
||||||
|
|
||||||
@property
|
|
||||||
def PFL_TOP_FROM_VMID(self):
|
|
||||||
return self.apply_factor(142)
|
|
||||||
|
|
||||||
@property
|
|
||||||
def PFL_LEFT_FROM_HMID(self):
|
|
||||||
return self.apply_factor(10)
|
|
||||||
|
|
||||||
@property
|
|
||||||
def PFL_WIDTH(self):
|
|
||||||
return self.apply_factor(60)
|
|
||||||
|
|
||||||
@property
|
|
||||||
def PFL_FONT_PX(self):
|
|
||||||
return self.apply_factor(16)
|
|
||||||
|
|
||||||
@property
|
|
||||||
def PURE_FAR_GAP(self):
|
|
||||||
return self.apply_factor(20)
|
|
||||||
|
|
||||||
@property
|
|
||||||
def FAR_LOST_GAP(self):
|
|
||||||
return self.apply_factor(23)
|
|
||||||
|
|
||||||
@property
|
|
||||||
def SCORE_BOTTOM_FROM_VMID(self):
|
|
||||||
return self.apply_factor(-50)
|
|
||||||
|
|
||||||
@property
|
|
||||||
def SCORE_FONT_PX(self):
|
|
||||||
return self.apply_factor(45)
|
|
||||||
|
|
||||||
@property
|
|
||||||
def SCORE_WIDTH(self):
|
|
||||||
return self.apply_factor(280)
|
|
||||||
|
|
||||||
@property
|
|
||||||
def JACKET_RIGHT_FROM_HOR_MID(self):
|
|
||||||
return self.apply_factor(-235)
|
|
||||||
|
|
||||||
@property
|
|
||||||
def JACKET_WIDTH(self):
|
|
||||||
return self.apply_factor(375)
|
|
||||||
|
|
||||||
@property
|
|
||||||
def MR_RT_RIGHT_FROM_HMID(self):
|
|
||||||
return self.apply_factor(-330)
|
|
||||||
|
|
||||||
@property
|
|
||||||
def MR_RT_WIDTH(self):
|
|
||||||
return self.apply_factor(330)
|
|
||||||
|
|
||||||
@property
|
|
||||||
def MR_RT_HEIGHT(self):
|
|
||||||
return self.apply_factor(75)
|
|
||||||
|
|
||||||
@property
|
|
||||||
def TITLE_BOTTOM_FROM_VMID(self):
|
|
||||||
return self.apply_factor(-265)
|
|
||||||
|
|
||||||
@property
|
|
||||||
def TITLE_FONT_PX(self):
|
|
||||||
return self.apply_factor(40)
|
|
||||||
|
|
||||||
@property
|
|
||||||
def TITLE_WIDTH_RIGHT(self):
|
|
||||||
return self.apply_factor(275)
|
|
@ -1,2 +0,0 @@
|
|||||||
from .common import Extractor
|
|
||||||
from .sizes import *
|
|
@ -1,45 +0,0 @@
|
|||||||
import cv2
|
|
||||||
|
|
||||||
from ..crop import crop_xywh
|
|
||||||
from .sizes.common import Sizes
|
|
||||||
|
|
||||||
|
|
||||||
class Extractor:
|
|
||||||
def __init__(self, img: cv2.Mat, sizes: Sizes):
|
|
||||||
self.img = img
|
|
||||||
self.sizes = sizes
|
|
||||||
|
|
||||||
def __construct_int_rect(self, rect):
|
|
||||||
return tuple(round(r) for r in rect)
|
|
||||||
|
|
||||||
@property
|
|
||||||
def pure(self):
|
|
||||||
return crop_xywh(self.img, self.__construct_int_rect(self.sizes.pure))
|
|
||||||
|
|
||||||
@property
|
|
||||||
def far(self):
|
|
||||||
return crop_xywh(self.img, self.__construct_int_rect(self.sizes.far))
|
|
||||||
|
|
||||||
@property
|
|
||||||
def lost(self):
|
|
||||||
return crop_xywh(self.img, self.__construct_int_rect(self.sizes.lost))
|
|
||||||
|
|
||||||
@property
|
|
||||||
def score(self):
|
|
||||||
return crop_xywh(self.img, self.__construct_int_rect(self.sizes.score))
|
|
||||||
|
|
||||||
@property
|
|
||||||
def rating_class(self):
|
|
||||||
return crop_xywh(self.img, self.__construct_int_rect(self.sizes.rating_class))
|
|
||||||
|
|
||||||
@property
|
|
||||||
def max_recall(self):
|
|
||||||
return crop_xywh(self.img, self.__construct_int_rect(self.sizes.max_recall))
|
|
||||||
|
|
||||||
@property
|
|
||||||
def clear_status(self):
|
|
||||||
return crop_xywh(self.img, self.__construct_int_rect(self.sizes.clear_status))
|
|
||||||
|
|
||||||
@property
|
|
||||||
def partner_icon(self):
|
|
||||||
return crop_xywh(self.img, self.__construct_int_rect(self.sizes.partner_icon))
|
|
@ -1 +0,0 @@
|
|||||||
from .auto import *
|
|
@ -1,3 +0,0 @@
|
|||||||
from .common import AutoSizes
|
|
||||||
from .t1 import AutoSizesT1
|
|
||||||
from .t2 import AutoSizesT2
|
|
@ -1,7 +0,0 @@
|
|||||||
from ..common import Sizes
|
|
||||||
|
|
||||||
|
|
||||||
class AutoSizes(Sizes):
|
|
||||||
def __init__(self, w: int, h: int):
|
|
||||||
self.w = w
|
|
||||||
self.h = h
|
|
@ -1,123 +0,0 @@
|
|||||||
from .common import AutoSizes
|
|
||||||
|
|
||||||
|
|
||||||
class AutoSizesT1(AutoSizes):
|
|
||||||
@property
|
|
||||||
def factor(self):
|
|
||||||
return (
|
|
||||||
((self.w / 16) * 9) / 720 if (self.w / self.h) < (16 / 9) else self.h / 720
|
|
||||||
)
|
|
||||||
|
|
||||||
@property
|
|
||||||
def w_mid(self):
|
|
||||||
return self.w / 2
|
|
||||||
|
|
||||||
@property
|
|
||||||
def h_mid(self):
|
|
||||||
return self.h / 2
|
|
||||||
|
|
||||||
@property
|
|
||||||
def top_bar(self):
|
|
||||||
return (0, 0, self.w, 50 * self.factor)
|
|
||||||
|
|
||||||
@property
|
|
||||||
def layout_area_h_mid(self):
|
|
||||||
return self.h / 2 + self.top_bar[3]
|
|
||||||
|
|
||||||
@property
|
|
||||||
def pfl_left_from_w_mid(self):
|
|
||||||
return 5 * self.factor
|
|
||||||
|
|
||||||
@property
|
|
||||||
def pfl_x(self):
|
|
||||||
return self.w_mid + self.pfl_left_from_w_mid
|
|
||||||
|
|
||||||
@property
|
|
||||||
def pfl_w(self):
|
|
||||||
return 76 * self.factor
|
|
||||||
|
|
||||||
@property
|
|
||||||
def pfl_h(self):
|
|
||||||
return 26 * self.factor
|
|
||||||
|
|
||||||
@property
|
|
||||||
def pure(self):
|
|
||||||
return (
|
|
||||||
self.pfl_x,
|
|
||||||
self.layout_area_h_mid + 110 * self.factor,
|
|
||||||
self.pfl_w,
|
|
||||||
self.pfl_h,
|
|
||||||
)
|
|
||||||
|
|
||||||
@property
|
|
||||||
def far(self):
|
|
||||||
return (
|
|
||||||
self.pfl_x,
|
|
||||||
self.pure[1] + self.pure[3] + 12 * self.factor,
|
|
||||||
self.pfl_w,
|
|
||||||
self.pfl_h,
|
|
||||||
)
|
|
||||||
|
|
||||||
@property
|
|
||||||
def lost(self):
|
|
||||||
return (
|
|
||||||
self.pfl_x,
|
|
||||||
self.far[1] + self.far[3] + 10 * self.factor,
|
|
||||||
self.pfl_w,
|
|
||||||
self.pfl_h,
|
|
||||||
)
|
|
||||||
|
|
||||||
@property
|
|
||||||
def score(self):
|
|
||||||
w = 280 * self.factor
|
|
||||||
h = 45 * self.factor
|
|
||||||
return (
|
|
||||||
self.w_mid - w / 2,
|
|
||||||
self.layout_area_h_mid - 75 * self.factor - h,
|
|
||||||
w,
|
|
||||||
h,
|
|
||||||
)
|
|
||||||
|
|
||||||
@property
|
|
||||||
def rating_class(self):
|
|
||||||
return (
|
|
||||||
self.w_mid - 610 * self.factor,
|
|
||||||
self.layout_area_h_mid - 180 * self.factor,
|
|
||||||
265 * self.factor,
|
|
||||||
35 * self.factor,
|
|
||||||
)
|
|
||||||
|
|
||||||
@property
|
|
||||||
def max_recall(self):
|
|
||||||
return (
|
|
||||||
self.w_mid - 465 * self.factor,
|
|
||||||
self.layout_area_h_mid - 215 * self.factor,
|
|
||||||
150 * self.factor,
|
|
||||||
35 * self.factor,
|
|
||||||
)
|
|
||||||
|
|
||||||
@property
|
|
||||||
def jacket(self):
|
|
||||||
return (
|
|
||||||
self.w_mid - 610 * self.factor,
|
|
||||||
self.layout_area_h_mid - 143 * self.factor,
|
|
||||||
375 * self.factor,
|
|
||||||
375 * self.factor,
|
|
||||||
)
|
|
||||||
|
|
||||||
@property
|
|
||||||
def clear_status(self):
|
|
||||||
w = 550 * self.factor
|
|
||||||
h = 60 * self.factor
|
|
||||||
return (
|
|
||||||
self.w_mid - w / 2,
|
|
||||||
self.layout_area_h_mid - 155 * self.factor - h,
|
|
||||||
w,
|
|
||||||
h,
|
|
||||||
)
|
|
||||||
|
|
||||||
@property
|
|
||||||
def partner_icon(self):
|
|
||||||
w = 90 * self.factor
|
|
||||||
h = 75 * self.factor
|
|
||||||
return (self.w_mid - w / 2, 0, w, h)
|
|
@ -1,125 +0,0 @@
|
|||||||
from .common import AutoSizes
|
|
||||||
|
|
||||||
|
|
||||||
class AutoSizesT2(AutoSizes):
|
|
||||||
@property
|
|
||||||
def factor(self):
|
|
||||||
return (
|
|
||||||
((self.w / 16) * 9) / 1080
|
|
||||||
if (self.w / self.h) < (16 / 9)
|
|
||||||
else self.h / 1080
|
|
||||||
)
|
|
||||||
|
|
||||||
@property
|
|
||||||
def w_mid(self):
|
|
||||||
return self.w / 2
|
|
||||||
|
|
||||||
@property
|
|
||||||
def h_mid(self):
|
|
||||||
return self.h / 2
|
|
||||||
|
|
||||||
@property
|
|
||||||
def top_bar(self):
|
|
||||||
return (0, 0, self.w, 75 * self.factor)
|
|
||||||
|
|
||||||
@property
|
|
||||||
def layout_area_h_mid(self):
|
|
||||||
return self.h / 2 + self.top_bar[3]
|
|
||||||
|
|
||||||
@property
|
|
||||||
def pfl_mid_from_w_mid(self):
|
|
||||||
return 60 * self.factor
|
|
||||||
|
|
||||||
@property
|
|
||||||
def pfl_x(self):
|
|
||||||
return self.w_mid + 10 * self.factor
|
|
||||||
|
|
||||||
@property
|
|
||||||
def pfl_w(self):
|
|
||||||
return 100 * self.factor
|
|
||||||
|
|
||||||
@property
|
|
||||||
def pfl_h(self):
|
|
||||||
return 24 * self.factor
|
|
||||||
|
|
||||||
@property
|
|
||||||
def pure(self):
|
|
||||||
return (
|
|
||||||
self.pfl_x,
|
|
||||||
self.layout_area_h_mid + 175 * self.factor,
|
|
||||||
self.pfl_w,
|
|
||||||
self.pfl_h,
|
|
||||||
)
|
|
||||||
|
|
||||||
@property
|
|
||||||
def far(self):
|
|
||||||
return (
|
|
||||||
self.pfl_x,
|
|
||||||
self.pure[1] + self.pure[3] + 30 * self.factor,
|
|
||||||
self.pfl_w,
|
|
||||||
self.pfl_h,
|
|
||||||
)
|
|
||||||
|
|
||||||
@property
|
|
||||||
def lost(self):
|
|
||||||
return (
|
|
||||||
self.pfl_x,
|
|
||||||
self.far[1] + self.far[3] + 35 * self.factor,
|
|
||||||
self.pfl_w,
|
|
||||||
self.pfl_h,
|
|
||||||
)
|
|
||||||
|
|
||||||
@property
|
|
||||||
def score(self):
|
|
||||||
w = 420 * self.factor
|
|
||||||
h = 70 * self.factor
|
|
||||||
return (
|
|
||||||
self.w_mid - w / 2,
|
|
||||||
self.layout_area_h_mid - 110 * self.factor - h,
|
|
||||||
w,
|
|
||||||
h,
|
|
||||||
)
|
|
||||||
|
|
||||||
@property
|
|
||||||
def rating_class(self):
|
|
||||||
return (
|
|
||||||
max(0, self.w_mid - 965 * self.factor),
|
|
||||||
self.layout_area_h_mid - 330 * self.factor,
|
|
||||||
350 * self.factor,
|
|
||||||
110 * self.factor,
|
|
||||||
)
|
|
||||||
|
|
||||||
@property
|
|
||||||
def max_recall(self):
|
|
||||||
return (
|
|
||||||
self.w_mid - 625 * self.factor,
|
|
||||||
self.layout_area_h_mid - 275 * self.factor,
|
|
||||||
150 * self.factor,
|
|
||||||
50 * self.factor,
|
|
||||||
)
|
|
||||||
|
|
||||||
@property
|
|
||||||
def jacket(self):
|
|
||||||
return (
|
|
||||||
self.w_mid - 915 * self.factor,
|
|
||||||
self.layout_area_h_mid - 215 * self.factor,
|
|
||||||
565 * self.factor,
|
|
||||||
565 * self.factor,
|
|
||||||
)
|
|
||||||
|
|
||||||
@property
|
|
||||||
def clear_status(self):
|
|
||||||
w = 825 * self.factor
|
|
||||||
h = 90 * self.factor
|
|
||||||
return (
|
|
||||||
self.w_mid - w / 2,
|
|
||||||
self.layout_area_h_mid - 235 * self.factor - h,
|
|
||||||
w,
|
|
||||||
h,
|
|
||||||
)
|
|
||||||
|
|
||||||
@property
|
|
||||||
def partner_icon(self):
|
|
||||||
w = 135 * self.factor
|
|
||||||
h = 110 * self.factor
|
|
||||||
return (self.w_mid - w / 2, 0, w, h)
|
|
@ -1,15 +0,0 @@
|
|||||||
from typing import Tuple
|
|
||||||
|
|
||||||
Rect = Tuple[int, int, int, int]
|
|
||||||
|
|
||||||
|
|
||||||
class Sizes:
|
|
||||||
pure: Rect
|
|
||||||
far: Rect
|
|
||||||
lost: Rect
|
|
||||||
score: Rect
|
|
||||||
rating_class: Rect
|
|
||||||
max_recall: Rect
|
|
||||||
jacket: Rect
|
|
||||||
clear_status: Rect
|
|
||||||
partner_icon: Rect
|
|
@ -1,119 +0,0 @@
|
|||||||
import cv2
|
|
||||||
import numpy as np
|
|
||||||
|
|
||||||
from .types import Mat
|
|
||||||
|
|
||||||
__all__ = [
|
|
||||||
"GRAY_MIN_HSV",
|
|
||||||
"GRAY_MAX_HSV",
|
|
||||||
"WHITE_MIN_HSV",
|
|
||||||
"WHITE_MAX_HSV",
|
|
||||||
"PFL_WHITE_MIN_HSV",
|
|
||||||
"PFL_WHITE_MAX_HSV",
|
|
||||||
"PST_MIN_HSV",
|
|
||||||
"PST_MAX_HSV",
|
|
||||||
"PRS_MIN_HSV",
|
|
||||||
"PRS_MAX_HSV",
|
|
||||||
"FTR_MIN_HSV",
|
|
||||||
"FTR_MAX_HSV",
|
|
||||||
"BYD_MIN_HSV",
|
|
||||||
"BYD_MAX_HSV",
|
|
||||||
"MAX_RECALL_PURPLE_MIN_HSV",
|
|
||||||
"MAX_RECALL_PURPLE_MAX_HSV",
|
|
||||||
"mask_gray",
|
|
||||||
"mask_white",
|
|
||||||
"mask_pfl_white",
|
|
||||||
"mask_pst",
|
|
||||||
"mask_prs",
|
|
||||||
"mask_ftr",
|
|
||||||
"mask_byd",
|
|
||||||
"mask_rating_class",
|
|
||||||
"mask_max_recall_purple",
|
|
||||||
]
|
|
||||||
|
|
||||||
GRAY_MIN_HSV = np.array([0, 0, 70], np.uint8)
|
|
||||||
GRAY_MAX_HSV = np.array([0, 0, 200], np.uint8)
|
|
||||||
|
|
||||||
GRAY_MIN_BGR = np.array([50] * 3, np.uint8)
|
|
||||||
GRAY_MAX_BGR = np.array([160] * 3, np.uint8)
|
|
||||||
|
|
||||||
WHITE_MIN_HSV = np.array([0, 0, 240], np.uint8)
|
|
||||||
WHITE_MAX_HSV = np.array([179, 10, 255], np.uint8)
|
|
||||||
|
|
||||||
PFL_WHITE_MIN_HSV = np.array([0, 0, 248], np.uint8)
|
|
||||||
PFL_WHITE_MAX_HSV = np.array([179, 10, 255], np.uint8)
|
|
||||||
|
|
||||||
PST_MIN_HSV = np.array([100, 50, 80], np.uint8)
|
|
||||||
PST_MAX_HSV = np.array([100, 255, 255], np.uint8)
|
|
||||||
|
|
||||||
PRS_MIN_HSV = np.array([43, 40, 75], np.uint8)
|
|
||||||
PRS_MAX_HSV = np.array([50, 155, 190], np.uint8)
|
|
||||||
|
|
||||||
FTR_MIN_HSV = np.array([149, 30, 0], np.uint8)
|
|
||||||
FTR_MAX_HSV = np.array([155, 181, 150], np.uint8)
|
|
||||||
|
|
||||||
BYD_MIN_HSV = np.array([170, 50, 50], np.uint8)
|
|
||||||
BYD_MAX_HSV = np.array([179, 210, 198], np.uint8)
|
|
||||||
|
|
||||||
MAX_RECALL_PURPLE_MIN_HSV = np.array([125, 0, 0], np.uint8)
|
|
||||||
MAX_RECALL_PURPLE_MAX_HSV = np.array([130, 100, 150], np.uint8)
|
|
||||||
|
|
||||||
|
|
||||||
def mask_gray(__img_bgr: Mat):
|
|
||||||
# bgr_value_equal_mask = all(__img_bgr[:, 1:] == __img_bgr[:, :-1], axis=1)
|
|
||||||
bgr_value_equal_mask = np.max(__img_bgr, axis=2) - np.min(__img_bgr, axis=2) <= 5
|
|
||||||
img_bgr = __img_bgr.copy()
|
|
||||||
img_bgr[~bgr_value_equal_mask] = np.array([0, 0, 0], __img_bgr.dtype)
|
|
||||||
img_bgr = cv2.erode(img_bgr, cv2.getStructuringElement(cv2.MORPH_RECT, (2, 2)))
|
|
||||||
img_bgr = cv2.dilate(img_bgr, cv2.getStructuringElement(cv2.MORPH_RECT, (1, 1)))
|
|
||||||
return cv2.inRange(img_bgr, GRAY_MIN_BGR, GRAY_MAX_BGR)
|
|
||||||
|
|
||||||
|
|
||||||
def mask_white(img_hsv: Mat):
|
|
||||||
mask = cv2.inRange(img_hsv, WHITE_MIN_HSV, WHITE_MAX_HSV)
|
|
||||||
mask = cv2.dilate(mask, cv2.getStructuringElement(cv2.MORPH_RECT, (2, 2)))
|
|
||||||
return mask
|
|
||||||
|
|
||||||
|
|
||||||
def mask_pfl_white(img_hsv: Mat):
|
|
||||||
mask = cv2.inRange(img_hsv, PFL_WHITE_MIN_HSV, PFL_WHITE_MAX_HSV)
|
|
||||||
mask = cv2.dilate(mask, cv2.getStructuringElement(cv2.MORPH_RECT, (2, 2)))
|
|
||||||
return mask
|
|
||||||
|
|
||||||
|
|
||||||
def mask_pst(img_hsv: Mat):
|
|
||||||
mask = cv2.inRange(img_hsv, PST_MIN_HSV, PST_MAX_HSV)
|
|
||||||
mask = cv2.dilate(mask, (1, 1))
|
|
||||||
return mask
|
|
||||||
|
|
||||||
|
|
||||||
def mask_prs(img_hsv: Mat):
|
|
||||||
mask = cv2.inRange(img_hsv, PRS_MIN_HSV, PRS_MAX_HSV)
|
|
||||||
mask = cv2.dilate(mask, (1, 1))
|
|
||||||
return mask
|
|
||||||
|
|
||||||
|
|
||||||
def mask_ftr(img_hsv: Mat):
|
|
||||||
mask = cv2.inRange(img_hsv, FTR_MIN_HSV, FTR_MAX_HSV)
|
|
||||||
mask = cv2.dilate(mask, (1, 1))
|
|
||||||
return mask
|
|
||||||
|
|
||||||
|
|
||||||
def mask_byd(img_hsv: Mat):
|
|
||||||
mask = cv2.inRange(img_hsv, BYD_MIN_HSV, BYD_MAX_HSV)
|
|
||||||
mask = cv2.dilate(mask, (2, 2))
|
|
||||||
return mask
|
|
||||||
|
|
||||||
|
|
||||||
def mask_rating_class(img_hsv: Mat):
|
|
||||||
pst = mask_pst(img_hsv)
|
|
||||||
prs = mask_prs(img_hsv)
|
|
||||||
ftr = mask_ftr(img_hsv)
|
|
||||||
byd = mask_byd(img_hsv)
|
|
||||||
return cv2.bitwise_or(byd, cv2.bitwise_or(ftr, cv2.bitwise_or(pst, prs)))
|
|
||||||
|
|
||||||
|
|
||||||
def mask_max_recall_purple(img_hsv: Mat):
|
|
||||||
mask = cv2.inRange(img_hsv, MAX_RECALL_PURPLE_MIN_HSV, MAX_RECALL_PURPLE_MAX_HSV)
|
|
||||||
mask = cv2.dilate(mask, (2, 2))
|
|
||||||
return mask
|
|
@ -1,55 +0,0 @@
|
|||||||
import cv2
|
|
||||||
|
|
||||||
|
|
||||||
class Masker:
|
|
||||||
@staticmethod
|
|
||||||
def pure(roi_bgr: cv2.Mat) -> cv2.Mat:
|
|
||||||
raise NotImplementedError()
|
|
||||||
|
|
||||||
@staticmethod
|
|
||||||
def far(roi_bgr: cv2.Mat) -> cv2.Mat:
|
|
||||||
raise NotImplementedError()
|
|
||||||
|
|
||||||
@staticmethod
|
|
||||||
def lost(roi_bgr: cv2.Mat) -> cv2.Mat:
|
|
||||||
raise NotImplementedError()
|
|
||||||
|
|
||||||
@staticmethod
|
|
||||||
def score(roi_bgr: cv2.Mat) -> cv2.Mat:
|
|
||||||
raise NotImplementedError()
|
|
||||||
|
|
||||||
@staticmethod
|
|
||||||
def rating_class_pst(roi_bgr: cv2.Mat) -> cv2.Mat:
|
|
||||||
raise NotImplementedError()
|
|
||||||
|
|
||||||
@staticmethod
|
|
||||||
def rating_class_prs(roi_bgr: cv2.Mat) -> cv2.Mat:
|
|
||||||
raise NotImplementedError()
|
|
||||||
|
|
||||||
@staticmethod
|
|
||||||
def rating_class_ftr(roi_bgr: cv2.Mat) -> cv2.Mat:
|
|
||||||
raise NotImplementedError()
|
|
||||||
|
|
||||||
@staticmethod
|
|
||||||
def rating_class_byd(roi_bgr: cv2.Mat) -> cv2.Mat:
|
|
||||||
raise NotImplementedError()
|
|
||||||
|
|
||||||
@staticmethod
|
|
||||||
def max_recall(roi_bgr: cv2.Mat) -> cv2.Mat:
|
|
||||||
raise NotImplementedError()
|
|
||||||
|
|
||||||
@staticmethod
|
|
||||||
def clear_status_track_lost(roi_bgr: cv2.Mat) -> cv2.Mat:
|
|
||||||
raise NotImplementedError()
|
|
||||||
|
|
||||||
@staticmethod
|
|
||||||
def clear_status_track_complete(roi_bgr: cv2.Mat) -> cv2.Mat:
|
|
||||||
raise NotImplementedError()
|
|
||||||
|
|
||||||
@staticmethod
|
|
||||||
def clear_status_full_recall(roi_bgr: cv2.Mat) -> cv2.Mat:
|
|
||||||
raise NotImplementedError()
|
|
||||||
|
|
||||||
@staticmethod
|
|
||||||
def clear_status_pure_memory(roi_bgr: cv2.Mat) -> cv2.Mat:
|
|
||||||
raise NotImplementedError()
|
|
@ -1,211 +0,0 @@
|
|||||||
import math
|
|
||||||
from copy import deepcopy
|
|
||||||
from typing import Optional, Sequence, Tuple
|
|
||||||
|
|
||||||
import cv2
|
|
||||||
import numpy as np
|
|
||||||
from numpy.linalg import norm
|
|
||||||
|
|
||||||
from .crop import crop_xywh
|
|
||||||
from .mask import mask_byd, mask_ftr, mask_prs, mask_pst
|
|
||||||
from .types import Mat, cv2_ml_KNearest
|
|
||||||
|
|
||||||
__all__ = [
|
|
||||||
"FixRects",
|
|
||||||
"preprocess_hog",
|
|
||||||
"ocr_digits_by_contour_get_samples",
|
|
||||||
"ocr_digits_by_contour_knn",
|
|
||||||
]
|
|
||||||
|
|
||||||
|
|
||||||
class FixRects:
|
|
||||||
@staticmethod
|
|
||||||
def connect_broken(
|
|
||||||
rects: Sequence[Tuple[int, int, int, int]],
|
|
||||||
img_width: int,
|
|
||||||
img_height: int,
|
|
||||||
tolerance: Optional[int] = None,
|
|
||||||
):
|
|
||||||
# for a "broken" digit, please refer to
|
|
||||||
# /assets/fix_rects/broken_masked.jpg
|
|
||||||
# the larger "5" in the image is a "broken" digit
|
|
||||||
|
|
||||||
if tolerance is None:
|
|
||||||
tolerance = math.ceil(img_width * 0.08)
|
|
||||||
|
|
||||||
new_rects = []
|
|
||||||
consumed_rects = []
|
|
||||||
for rect in rects:
|
|
||||||
if rect in consumed_rects:
|
|
||||||
continue
|
|
||||||
|
|
||||||
x, y, w, h = rect
|
|
||||||
# grab those small rects
|
|
||||||
if not img_height * 0.1 <= h <= img_height * 0.6:
|
|
||||||
continue
|
|
||||||
|
|
||||||
group = []
|
|
||||||
# see if there's other rects that have near left & right borders
|
|
||||||
for other_rect in rects:
|
|
||||||
if rect == other_rect:
|
|
||||||
continue
|
|
||||||
ox, oy, ow, oh = other_rect
|
|
||||||
if abs(x - ox) < tolerance and abs((x + w) - (ox + ow)) < tolerance:
|
|
||||||
group.append(other_rect)
|
|
||||||
|
|
||||||
if group:
|
|
||||||
group.append(rect)
|
|
||||||
consumed_rects.extend(group)
|
|
||||||
# calculate the new rect
|
|
||||||
new_x = min(r[0] for r in group)
|
|
||||||
new_y = min(r[1] for r in group)
|
|
||||||
new_right = max(r[0] + r[2] for r in group)
|
|
||||||
new_bottom = max(r[1] + r[3] for r in group)
|
|
||||||
new_w = new_right - new_x
|
|
||||||
new_h = new_bottom - new_y
|
|
||||||
new_rects.append((new_x, new_y, new_w, new_h))
|
|
||||||
|
|
||||||
return_rects = deepcopy(rects)
|
|
||||||
return_rects = [r for r in return_rects if r not in consumed_rects]
|
|
||||||
return_rects.extend(new_rects)
|
|
||||||
return return_rects
|
|
||||||
|
|
||||||
@staticmethod
|
|
||||||
def split_connected(
|
|
||||||
img_masked: Mat,
|
|
||||||
rects: Sequence[Tuple[int, int, int, int]],
|
|
||||||
rect_wh_ratio: float = 1.05,
|
|
||||||
width_range_ratio: float = 0.1,
|
|
||||||
):
|
|
||||||
connected_rects = []
|
|
||||||
new_rects = []
|
|
||||||
for rect in rects:
|
|
||||||
rx, ry, rw, rh = rect
|
|
||||||
if rw / rh > rect_wh_ratio:
|
|
||||||
# consider this is a connected contour
|
|
||||||
connected_rects.append(rect)
|
|
||||||
|
|
||||||
# find the thinnest part
|
|
||||||
border_ignore = round(rw * width_range_ratio)
|
|
||||||
img_cropped = crop_xywh(
|
|
||||||
img_masked,
|
|
||||||
(border_ignore, ry, rw - border_ignore, rh),
|
|
||||||
)
|
|
||||||
white_pixels = {} # dict[x, white_pixel_number]
|
|
||||||
for i in range(img_cropped.shape[1]):
|
|
||||||
col = img_cropped[:, i]
|
|
||||||
white_pixels[rx + border_ignore + i] = np.count_nonzero(col > 200)
|
|
||||||
least_white_pixels = min(v for v in white_pixels.values() if v > 0)
|
|
||||||
x_values = [
|
|
||||||
x
|
|
||||||
for x, pixel in white_pixels.items()
|
|
||||||
if pixel == least_white_pixels
|
|
||||||
]
|
|
||||||
# select only middle values
|
|
||||||
x_mean = np.mean(x_values)
|
|
||||||
x_std = np.std(x_values)
|
|
||||||
x_values = [
|
|
||||||
x
|
|
||||||
for x in x_values
|
|
||||||
if x_mean - x_std * 1.5 <= x <= x_mean + x_std * 1.5
|
|
||||||
]
|
|
||||||
x_mid = round(np.median(x_values))
|
|
||||||
|
|
||||||
# split the rect
|
|
||||||
new_rects.extend(
|
|
||||||
[(rx, ry, x_mid - rx, rh), (x_mid, ry, rx + rw - x_mid, rh)]
|
|
||||||
)
|
|
||||||
|
|
||||||
return_rects = deepcopy(rects)
|
|
||||||
return_rects = [r for r in rects if r not in connected_rects]
|
|
||||||
return_rects.extend(new_rects)
|
|
||||||
return return_rects
|
|
||||||
|
|
||||||
|
|
||||||
def resize_fill_square(img: Mat, target: int = 20):
|
|
||||||
h, w = img.shape[:2]
|
|
||||||
if h > w:
|
|
||||||
new_h = target
|
|
||||||
new_w = round(w * (target / h))
|
|
||||||
else:
|
|
||||||
new_w = target
|
|
||||||
new_h = round(h * (target / w))
|
|
||||||
resized = cv2.resize(img, (new_w, new_h))
|
|
||||||
|
|
||||||
border_size = math.ceil((max(new_w, new_h) - min(new_w, new_h)) / 2)
|
|
||||||
if new_w < new_h:
|
|
||||||
resized = cv2.copyMakeBorder(
|
|
||||||
resized, 0, 0, border_size, border_size, cv2.BORDER_CONSTANT
|
|
||||||
)
|
|
||||||
else:
|
|
||||||
resized = cv2.copyMakeBorder(
|
|
||||||
resized, border_size, border_size, 0, 0, cv2.BORDER_CONSTANT
|
|
||||||
)
|
|
||||||
return cv2.resize(resized, (target, target))
|
|
||||||
|
|
||||||
|
|
||||||
def preprocess_hog(digit_rois):
|
|
||||||
# https://github.com/opencv/opencv/blob/f834736307c8328340aea48908484052170c9224/samples/python/digits.py
|
|
||||||
samples = []
|
|
||||||
for digit in digit_rois:
|
|
||||||
gx = cv2.Sobel(digit, cv2.CV_32F, 1, 0)
|
|
||||||
gy = cv2.Sobel(digit, cv2.CV_32F, 0, 1)
|
|
||||||
mag, ang = cv2.cartToPolar(gx, gy)
|
|
||||||
bin_n = 16
|
|
||||||
_bin = np.int32(bin_n * ang / (2 * np.pi))
|
|
||||||
bin_cells = _bin[:10, :10], _bin[10:, :10], _bin[:10, 10:], _bin[10:, 10:]
|
|
||||||
mag_cells = mag[:10, :10], mag[10:, :10], mag[:10, 10:], mag[10:, 10:]
|
|
||||||
hists = [
|
|
||||||
np.bincount(b.ravel(), m.ravel(), bin_n)
|
|
||||||
for b, m in zip(bin_cells, mag_cells)
|
|
||||||
]
|
|
||||||
hist = np.hstack(hists)
|
|
||||||
|
|
||||||
# transform to Hellinger kernel
|
|
||||||
eps = 1e-7
|
|
||||||
hist /= hist.sum() + eps
|
|
||||||
hist = np.sqrt(hist)
|
|
||||||
hist /= norm(hist) + eps
|
|
||||||
|
|
||||||
samples.append(hist)
|
|
||||||
return np.float32(samples)
|
|
||||||
|
|
||||||
|
|
||||||
def ocr_digit_samples_knn(__samples, knn_model: cv2_ml_KNearest, k: int = 4):
|
|
||||||
_, results, _, _ = knn_model.findNearest(__samples, k)
|
|
||||||
result_list = [int(r) for r in results.ravel()]
|
|
||||||
result_str = "".join(str(r) for r in result_list if r > -1)
|
|
||||||
return int(result_str) if result_str else 0
|
|
||||||
|
|
||||||
|
|
||||||
def ocr_digits_by_contour_get_samples(__roi_gray: Mat, size: int):
|
|
||||||
roi = __roi_gray.copy()
|
|
||||||
contours, _ = cv2.findContours(roi, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
|
|
||||||
rects = [cv2.boundingRect(c) for c in contours]
|
|
||||||
rects = FixRects.connect_broken(rects, roi.shape[1], roi.shape[0])
|
|
||||||
rects = FixRects.split_connected(roi, rects)
|
|
||||||
rects = sorted(rects, key=lambda r: r[0])
|
|
||||||
# digit_rois = [cv2.resize(crop_xywh(roi, rect), size) for rect in rects]
|
|
||||||
digit_rois = [resize_fill_square(crop_xywh(roi, rect), size) for rect in rects]
|
|
||||||
return preprocess_hog(digit_rois)
|
|
||||||
|
|
||||||
|
|
||||||
def ocr_digits_by_contour_knn(
|
|
||||||
__roi_gray: Mat,
|
|
||||||
knn_model: cv2_ml_KNearest,
|
|
||||||
*,
|
|
||||||
k=4,
|
|
||||||
size: int = 20,
|
|
||||||
) -> int:
|
|
||||||
samples = ocr_digits_by_contour_get_samples(__roi_gray, size)
|
|
||||||
return ocr_digit_samples_knn(samples, knn_model, k)
|
|
||||||
|
|
||||||
|
|
||||||
def ocr_rating_class(roi_hsv: Mat):
|
|
||||||
mask_results = [
|
|
||||||
mask_pst(roi_hsv),
|
|
||||||
mask_prs(roi_hsv),
|
|
||||||
mask_ftr(roi_hsv),
|
|
||||||
mask_byd(roi_hsv),
|
|
||||||
]
|
|
||||||
return max(enumerate(mask_results), key=lambda e: np.count_nonzero(e[1]))[0]
|
|
@ -1,65 +0,0 @@
|
|||||||
import sqlite3
|
|
||||||
|
|
||||||
import imagehash
|
|
||||||
import numpy as np
|
|
||||||
from PIL import Image
|
|
||||||
|
|
||||||
|
|
||||||
def hamming_distance_sql_function(user_input, db_entry) -> int:
|
|
||||||
return np.count_nonzero(
|
|
||||||
np.frombuffer(user_input, bool) ^ np.frombuffer(db_entry, bool)
|
|
||||||
)
|
|
||||||
|
|
||||||
|
|
||||||
class ImagePHashDatabase:
|
|
||||||
def __init__(self, db_path: str):
|
|
||||||
with sqlite3.connect(db_path) as conn:
|
|
||||||
self.hash_size = int(
|
|
||||||
conn.execute(
|
|
||||||
"SELECT value FROM properties WHERE key = 'hash_size'"
|
|
||||||
).fetchone()[0]
|
|
||||||
)
|
|
||||||
self.highfreq_factor = int(
|
|
||||||
conn.execute(
|
|
||||||
"SELECT value FROM properties WHERE key = 'highfreq_factor'"
|
|
||||||
).fetchone()[0]
|
|
||||||
)
|
|
||||||
self.built_timestamp = int(
|
|
||||||
conn.execute(
|
|
||||||
"SELECT value FROM properties WHERE key = 'built_timestamp'"
|
|
||||||
).fetchone()[0]
|
|
||||||
)
|
|
||||||
|
|
||||||
# self.conn.create_function(
|
|
||||||
# "HAMMING_DISTANCE",
|
|
||||||
# 2,
|
|
||||||
# hamming_distance_sql_function,
|
|
||||||
# deterministic=True,
|
|
||||||
# )
|
|
||||||
|
|
||||||
self.ids = [i[0] for i in conn.execute("SELECT id FROM hashes").fetchall()]
|
|
||||||
self.hashes_byte = [
|
|
||||||
i[0] for i in conn.execute("SELECT hash FROM hashes").fetchall()
|
|
||||||
]
|
|
||||||
self.hashes = [np.frombuffer(hb, bool) for hb in self.hashes_byte]
|
|
||||||
self.hashes_slice_size = round(len(self.hashes_byte[0]) * 0.25)
|
|
||||||
self.hashes_head = [h[: self.hashes_slice_size] for h in self.hashes]
|
|
||||||
self.hashes_tail = [h[-self.hashes_slice_size :] for h in self.hashes]
|
|
||||||
|
|
||||||
def lookup_hash(self, image_hash: imagehash.ImageHash, *, limit: int = 5):
|
|
||||||
image_hash = image_hash.hash.flatten()
|
|
||||||
# image_hash_head = image_hash[: self.hashes_slice_size]
|
|
||||||
# image_hash_tail = image_hash[-self.hashes_slice_size :]
|
|
||||||
# head_xor_results = [image_hash_head ^ h for h in self.hashes]
|
|
||||||
# tail_xor_results = [image_hash_head ^ h for h in self.hashes]
|
|
||||||
xor_results = [
|
|
||||||
(id, np.count_nonzero(image_hash ^ h))
|
|
||||||
for id, h in zip(self.ids, self.hashes)
|
|
||||||
]
|
|
||||||
return sorted(xor_results, key=lambda r: r[1])[:limit]
|
|
||||||
|
|
||||||
def lookup_image(self, pil_image: Image.Image):
|
|
||||||
image_hash = imagehash.phash(
|
|
||||||
pil_image, hash_size=self.hash_size, highfreq_factor=self.highfreq_factor
|
|
||||||
)
|
|
||||||
return self.lookup_hash(image_hash)[0]
|
|
12
src/arcaea_offline_ocr/providers/__init__.py
Normal file
12
src/arcaea_offline_ocr/providers/__init__.py
Normal file
@ -0,0 +1,12 @@
|
|||||||
|
from .base import ImageCategory, ImageIdProvider, ImageIdProviderResult, OcrTextProvider
|
||||||
|
from .ihdb import ImageHashDatabaseIdProvider
|
||||||
|
from .knn import OcrKNearestTextProvider
|
||||||
|
|
||||||
|
__all__ = [
|
||||||
|
"ImageCategory",
|
||||||
|
"ImageHashDatabaseIdProvider",
|
||||||
|
"OcrKNearestTextProvider",
|
||||||
|
"ImageIdProvider",
|
||||||
|
"OcrTextProvider",
|
||||||
|
"ImageIdProviderResult",
|
||||||
|
]
|
38
src/arcaea_offline_ocr/providers/base.py
Normal file
38
src/arcaea_offline_ocr/providers/base.py
Normal file
@ -0,0 +1,38 @@
|
|||||||
|
from abc import ABC, abstractmethod
|
||||||
|
from dataclasses import dataclass
|
||||||
|
from enum import IntEnum
|
||||||
|
from typing import TYPE_CHECKING, Any, Sequence, Optional
|
||||||
|
|
||||||
|
if TYPE_CHECKING:
|
||||||
|
from ..types import Mat
|
||||||
|
|
||||||
|
|
||||||
|
class OcrTextProvider(ABC):
|
||||||
|
@abstractmethod
|
||||||
|
def result_raw(self, img: "Mat", /, *args, **kwargs) -> Any: ...
|
||||||
|
@abstractmethod
|
||||||
|
def result(self, img: "Mat", /, *args, **kwargs) -> Optional[str]: ...
|
||||||
|
|
||||||
|
|
||||||
|
class ImageCategory(IntEnum):
|
||||||
|
JACKET = 0
|
||||||
|
PARTNER_ICON = 1
|
||||||
|
|
||||||
|
|
||||||
|
@dataclass(kw_only=True)
|
||||||
|
class ImageIdProviderResult:
|
||||||
|
image_id: str
|
||||||
|
category: ImageCategory
|
||||||
|
confidence: float
|
||||||
|
|
||||||
|
|
||||||
|
class ImageIdProvider(ABC):
|
||||||
|
@abstractmethod
|
||||||
|
def result(
|
||||||
|
self, img: "Mat", category: ImageCategory, /, *args, **kwargs
|
||||||
|
) -> ImageIdProviderResult: ...
|
||||||
|
|
||||||
|
@abstractmethod
|
||||||
|
def results(
|
||||||
|
self, img: "Mat", category: ImageCategory, /, *args, **kwargs
|
||||||
|
) -> Sequence[ImageIdProviderResult]: ...
|
194
src/arcaea_offline_ocr/providers/ihdb.py
Normal file
194
src/arcaea_offline_ocr/providers/ihdb.py
Normal file
@ -0,0 +1,194 @@
|
|||||||
|
import sqlite3
|
||||||
|
from dataclasses import dataclass
|
||||||
|
from datetime import datetime, timezone
|
||||||
|
from enum import IntEnum
|
||||||
|
from typing import TYPE_CHECKING, Any, Callable, List, Optional, TypeVar
|
||||||
|
|
||||||
|
from arcaea_offline_ocr.core import hashers
|
||||||
|
|
||||||
|
from .base import ImageCategory, ImageIdProvider, ImageIdProviderResult
|
||||||
|
|
||||||
|
if TYPE_CHECKING:
|
||||||
|
from arcaea_offline_ocr.types import Mat
|
||||||
|
|
||||||
|
|
||||||
|
T = TypeVar("T")
|
||||||
|
PROP_KEY_HASH_SIZE = "hash_size"
|
||||||
|
PROP_KEY_HIGH_FREQ_FACTOR = "high_freq_factor"
|
||||||
|
PROP_KEY_BUILT_AT = "built_at"
|
||||||
|
|
||||||
|
|
||||||
|
def _sql_hamming_distance(hash1: bytes, hash2: bytes):
|
||||||
|
assert len(hash1) == len(hash2), "hash size does not match!"
|
||||||
|
count = sum(1 for byte1, byte2 in zip(hash1, hash2) if byte1 != byte2)
|
||||||
|
return count
|
||||||
|
|
||||||
|
|
||||||
|
class ImageHashType(IntEnum):
|
||||||
|
AVERAGE = 0
|
||||||
|
DIFFERENCE = 1
|
||||||
|
DCT = 2
|
||||||
|
|
||||||
|
|
||||||
|
@dataclass(kw_only=True)
|
||||||
|
class ImageHashDatabaseIdProviderResult(ImageIdProviderResult):
|
||||||
|
image_hash_type: ImageHashType
|
||||||
|
|
||||||
|
|
||||||
|
class MissingPropertiesError(Exception):
|
||||||
|
keys: List[str]
|
||||||
|
|
||||||
|
def __init__(self, keys, *args):
|
||||||
|
super().__init__(*args)
|
||||||
|
self.keys = keys
|
||||||
|
|
||||||
|
|
||||||
|
class ImageHashDatabaseIdProvider(ImageIdProvider):
|
||||||
|
def __init__(self, conn: sqlite3.Connection):
|
||||||
|
self.conn = conn
|
||||||
|
self.conn.create_function("HAMMING_DISTANCE", 2, _sql_hamming_distance)
|
||||||
|
|
||||||
|
self.properties = {
|
||||||
|
PROP_KEY_HASH_SIZE: -1,
|
||||||
|
PROP_KEY_HIGH_FREQ_FACTOR: -1,
|
||||||
|
PROP_KEY_BUILT_AT: None,
|
||||||
|
}
|
||||||
|
|
||||||
|
self._hashes_count = {
|
||||||
|
ImageCategory.JACKET: 0,
|
||||||
|
ImageCategory.PARTNER_ICON: 0,
|
||||||
|
}
|
||||||
|
|
||||||
|
self._hash_length: int = -1
|
||||||
|
|
||||||
|
self._initialize()
|
||||||
|
|
||||||
|
@property
|
||||||
|
def hash_size(self) -> int:
|
||||||
|
return self.properties[PROP_KEY_HASH_SIZE]
|
||||||
|
|
||||||
|
@property
|
||||||
|
def high_freq_factor(self) -> int:
|
||||||
|
return self.properties[PROP_KEY_HIGH_FREQ_FACTOR]
|
||||||
|
|
||||||
|
@property
|
||||||
|
def built_at(self) -> Optional[datetime]:
|
||||||
|
return self.properties.get(PROP_KEY_BUILT_AT)
|
||||||
|
|
||||||
|
@property
|
||||||
|
def hash_length(self):
|
||||||
|
return self._hash_length
|
||||||
|
|
||||||
|
def _initialize(self):
|
||||||
|
def get_property(key, converter: Callable[[Any], T]) -> Optional[T]:
|
||||||
|
result = self.conn.execute(
|
||||||
|
"SELECT value FROM properties WHERE key = ?",
|
||||||
|
(key,),
|
||||||
|
).fetchone()
|
||||||
|
return converter(result[0]) if result is not None else None
|
||||||
|
|
||||||
|
def set_hashes_count(category: ImageCategory):
|
||||||
|
self._hashes_count[category] = self.conn.execute(
|
||||||
|
"SELECT COUNT(DISTINCT `id`) FROM hashes WHERE category = ?",
|
||||||
|
(category.value,),
|
||||||
|
).fetchone()[0]
|
||||||
|
|
||||||
|
properties_converter_map = {
|
||||||
|
PROP_KEY_HASH_SIZE: lambda x: int(x),
|
||||||
|
PROP_KEY_HIGH_FREQ_FACTOR: lambda x: int(x),
|
||||||
|
PROP_KEY_BUILT_AT: lambda ts: datetime.fromtimestamp(
|
||||||
|
int(ts) / 1000, tz=timezone.utc
|
||||||
|
),
|
||||||
|
}
|
||||||
|
required_properties = [PROP_KEY_HASH_SIZE, PROP_KEY_HIGH_FREQ_FACTOR]
|
||||||
|
|
||||||
|
missing_properties = []
|
||||||
|
for property_key, converter in properties_converter_map.items():
|
||||||
|
value = get_property(property_key, converter)
|
||||||
|
if value is None:
|
||||||
|
if property_key in required_properties:
|
||||||
|
missing_properties.append(property_key)
|
||||||
|
|
||||||
|
continue
|
||||||
|
|
||||||
|
self.properties[property_key] = value
|
||||||
|
|
||||||
|
if missing_properties:
|
||||||
|
raise MissingPropertiesError(keys=missing_properties)
|
||||||
|
|
||||||
|
set_hashes_count(ImageCategory.JACKET)
|
||||||
|
set_hashes_count(ImageCategory.PARTNER_ICON)
|
||||||
|
|
||||||
|
self._hash_length = self.hash_size**2
|
||||||
|
|
||||||
|
def lookup_hash(
|
||||||
|
self, category: ImageCategory, hash_type: ImageHashType, hash: bytes
|
||||||
|
) -> List[ImageHashDatabaseIdProviderResult]:
|
||||||
|
cursor = self.conn.execute(
|
||||||
|
"""
|
||||||
|
SELECT
|
||||||
|
`id`,
|
||||||
|
HAMMING_DISTANCE(hash, ?) AS distance
|
||||||
|
FROM hashes
|
||||||
|
WHERE category = ? AND hash_type = ?
|
||||||
|
ORDER BY distance ASC LIMIT 10""",
|
||||||
|
(hash, category.value, hash_type.value),
|
||||||
|
)
|
||||||
|
|
||||||
|
results = []
|
||||||
|
for id_, distance in cursor.fetchall():
|
||||||
|
results.append(
|
||||||
|
ImageHashDatabaseIdProviderResult(
|
||||||
|
image_id=id_,
|
||||||
|
category=category,
|
||||||
|
confidence=(self.hash_length - distance) / self.hash_length,
|
||||||
|
image_hash_type=hash_type,
|
||||||
|
)
|
||||||
|
)
|
||||||
|
|
||||||
|
return results
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def hash_mat_to_bytes(hash: "Mat") -> bytes:
|
||||||
|
return bytes([255 if b else 0 for b in hash.flatten()])
|
||||||
|
|
||||||
|
def results(self, img: "Mat", category: ImageCategory, /):
|
||||||
|
results: List[ImageHashDatabaseIdProviderResult] = []
|
||||||
|
|
||||||
|
results.extend(
|
||||||
|
self.lookup_hash(
|
||||||
|
category,
|
||||||
|
ImageHashType.AVERAGE,
|
||||||
|
self.hash_mat_to_bytes(hashers.average(img, self.hash_size)),
|
||||||
|
)
|
||||||
|
)
|
||||||
|
results.extend(
|
||||||
|
self.lookup_hash(
|
||||||
|
category,
|
||||||
|
ImageHashType.DIFFERENCE,
|
||||||
|
self.hash_mat_to_bytes(hashers.difference(img, self.hash_size)),
|
||||||
|
)
|
||||||
|
)
|
||||||
|
results.extend(
|
||||||
|
self.lookup_hash(
|
||||||
|
category,
|
||||||
|
ImageHashType.DCT,
|
||||||
|
self.hash_mat_to_bytes(
|
||||||
|
hashers.dct(img, self.hash_size, self.high_freq_factor)
|
||||||
|
),
|
||||||
|
)
|
||||||
|
)
|
||||||
|
|
||||||
|
return results
|
||||||
|
|
||||||
|
def result(
|
||||||
|
self,
|
||||||
|
img: "Mat",
|
||||||
|
category: ImageCategory,
|
||||||
|
/,
|
||||||
|
*,
|
||||||
|
hash_type: ImageHashType = ImageHashType.DCT,
|
||||||
|
):
|
||||||
|
return [
|
||||||
|
it for it in self.results(img, category) if it.image_hash_type == hash_type
|
||||||
|
][0]
|
240
src/arcaea_offline_ocr/providers/knn.py
Normal file
240
src/arcaea_offline_ocr/providers/knn.py
Normal file
@ -0,0 +1,240 @@
|
|||||||
|
import logging
|
||||||
|
import math
|
||||||
|
from typing import TYPE_CHECKING, Callable, Optional, Sequence, Tuple
|
||||||
|
|
||||||
|
import cv2
|
||||||
|
import numpy as np
|
||||||
|
|
||||||
|
from ..crop import crop_xywh
|
||||||
|
from .base import OcrTextProvider
|
||||||
|
|
||||||
|
if TYPE_CHECKING:
|
||||||
|
from cv2.ml import KNearest
|
||||||
|
|
||||||
|
from ..types import Mat
|
||||||
|
|
||||||
|
logger = logging.getLogger(__name__)
|
||||||
|
|
||||||
|
|
||||||
|
class FixRects:
|
||||||
|
@staticmethod
|
||||||
|
def connect_broken(
|
||||||
|
rects: Sequence[Tuple[int, int, int, int]],
|
||||||
|
img_width: int,
|
||||||
|
img_height: int,
|
||||||
|
tolerance: Optional[int] = None,
|
||||||
|
):
|
||||||
|
# for a "broken" digit, please refer to
|
||||||
|
# /assets/fix_rects/broken_masked.jpg
|
||||||
|
# the larger "5" in the image is a "broken" digit
|
||||||
|
|
||||||
|
if tolerance is None:
|
||||||
|
tolerance = math.ceil(img_width * 0.08)
|
||||||
|
|
||||||
|
new_rects = []
|
||||||
|
consumed_rects = []
|
||||||
|
for rect in rects:
|
||||||
|
if rect in consumed_rects:
|
||||||
|
continue
|
||||||
|
|
||||||
|
x, _, w, h = rect
|
||||||
|
# grab those small rects
|
||||||
|
if not img_height * 0.1 <= h <= img_height * 0.6:
|
||||||
|
continue
|
||||||
|
|
||||||
|
group = []
|
||||||
|
# see if there's other rects that have near left & right borders
|
||||||
|
for other_rect in rects:
|
||||||
|
if rect == other_rect:
|
||||||
|
continue
|
||||||
|
ox, _, ow, _ = other_rect
|
||||||
|
if abs(x - ox) < tolerance and abs((x + w) - (ox + ow)) < tolerance:
|
||||||
|
group.append(other_rect)
|
||||||
|
|
||||||
|
if group:
|
||||||
|
group.append(rect)
|
||||||
|
consumed_rects.extend(group)
|
||||||
|
# calculate the new rect
|
||||||
|
new_x = min(r[0] for r in group)
|
||||||
|
new_y = min(r[1] for r in group)
|
||||||
|
new_right = max(r[0] + r[2] for r in group)
|
||||||
|
new_bottom = max(r[1] + r[3] for r in group)
|
||||||
|
new_w = new_right - new_x
|
||||||
|
new_h = new_bottom - new_y
|
||||||
|
new_rects.append((new_x, new_y, new_w, new_h))
|
||||||
|
|
||||||
|
return_rects = [r for r in rects if r not in consumed_rects]
|
||||||
|
return_rects.extend(new_rects)
|
||||||
|
return return_rects
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def split_connected(
|
||||||
|
img_masked: "Mat",
|
||||||
|
rects: Sequence[Tuple[int, int, int, int]],
|
||||||
|
rect_wh_ratio: float = 1.05,
|
||||||
|
width_range_ratio: float = 0.1,
|
||||||
|
):
|
||||||
|
connected_rects = []
|
||||||
|
new_rects = []
|
||||||
|
for rect in rects:
|
||||||
|
rx, ry, rw, rh = rect
|
||||||
|
if rw / rh <= rect_wh_ratio:
|
||||||
|
continue
|
||||||
|
|
||||||
|
connected_rects.append(rect)
|
||||||
|
|
||||||
|
# find the thinnest part
|
||||||
|
border_ignore = round(rw * width_range_ratio)
|
||||||
|
img_cropped = crop_xywh(
|
||||||
|
img_masked,
|
||||||
|
(border_ignore, ry, rw - border_ignore, rh),
|
||||||
|
)
|
||||||
|
white_pixels = {} # dict[x, white_pixel_number]
|
||||||
|
for i in range(img_cropped.shape[1]):
|
||||||
|
col = img_cropped[:, i]
|
||||||
|
white_pixels[rx + border_ignore + i] = np.count_nonzero(col > 200)
|
||||||
|
|
||||||
|
if all(v == 0 for v in white_pixels.values()):
|
||||||
|
return rects
|
||||||
|
|
||||||
|
least_white_pixels = min(v for v in white_pixels.values() if v > 0)
|
||||||
|
x_values = [
|
||||||
|
x for x, pixel in white_pixels.items() if pixel == least_white_pixels
|
||||||
|
]
|
||||||
|
# select only middle values
|
||||||
|
x_mean = np.mean(x_values)
|
||||||
|
x_std = np.std(x_values)
|
||||||
|
x_values = [
|
||||||
|
x for x in x_values if x_mean - x_std * 1.5 <= x <= x_mean + x_std * 1.5
|
||||||
|
]
|
||||||
|
x_mid = round(np.median(x_values))
|
||||||
|
|
||||||
|
# split the rect
|
||||||
|
new_rects.extend(
|
||||||
|
[(rx, ry, x_mid - rx, rh), (x_mid, ry, rx + rw - x_mid, rh)]
|
||||||
|
)
|
||||||
|
|
||||||
|
return_rects = [r for r in rects if r not in connected_rects]
|
||||||
|
return_rects.extend(new_rects)
|
||||||
|
return return_rects
|
||||||
|
|
||||||
|
|
||||||
|
def resize_fill_square(img: "Mat", target: int = 20):
|
||||||
|
h, w = img.shape[:2]
|
||||||
|
if h > w:
|
||||||
|
new_h = target
|
||||||
|
new_w = round(w * (target / h))
|
||||||
|
else:
|
||||||
|
new_w = target
|
||||||
|
new_h = round(h * (target / w))
|
||||||
|
resized = cv2.resize(img, (new_w, new_h))
|
||||||
|
|
||||||
|
border_size = math.ceil((max(new_w, new_h) - min(new_w, new_h)) / 2)
|
||||||
|
if new_w < new_h:
|
||||||
|
resized = cv2.copyMakeBorder(
|
||||||
|
resized, 0, 0, border_size, border_size, cv2.BORDER_CONSTANT
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
resized = cv2.copyMakeBorder(
|
||||||
|
resized, border_size, border_size, 0, 0, cv2.BORDER_CONSTANT
|
||||||
|
)
|
||||||
|
return cv2.resize(resized, (target, target))
|
||||||
|
|
||||||
|
|
||||||
|
def preprocess_hog(digit_rois):
|
||||||
|
# https://learnopencv.com/handwritten-digits-classification-an-opencv-c-python-tutorial/
|
||||||
|
samples = []
|
||||||
|
for digit in digit_rois:
|
||||||
|
hog = cv2.HOGDescriptor((20, 20), (10, 10), (5, 5), (10, 10), 9)
|
||||||
|
hist = hog.compute(digit)
|
||||||
|
samples.append(hist)
|
||||||
|
return np.float32(samples)
|
||||||
|
|
||||||
|
|
||||||
|
def ocr_digit_samples_knn(__samples, knn_model: cv2.ml.KNearest, k: int = 4):
|
||||||
|
_, results, _, _ = knn_model.findNearest(__samples, k)
|
||||||
|
return [int(r) for r in results.ravel()]
|
||||||
|
|
||||||
|
|
||||||
|
class OcrKNearestTextProvider(OcrTextProvider):
|
||||||
|
_ContourFilter = Callable[["Mat"], bool]
|
||||||
|
_RectsFilter = Callable[[Sequence[int]], bool]
|
||||||
|
|
||||||
|
def __init__(self, model: "KNearest"):
|
||||||
|
self.model = model
|
||||||
|
|
||||||
|
def contours(
|
||||||
|
self, img: "Mat", /, *, contours_filter: Optional[_ContourFilter] = None
|
||||||
|
):
|
||||||
|
cnts, _ = cv2.findContours(img, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
|
||||||
|
if contours_filter:
|
||||||
|
cnts = list(filter(contours_filter, cnts))
|
||||||
|
|
||||||
|
return cnts
|
||||||
|
|
||||||
|
def result_raw(
|
||||||
|
self,
|
||||||
|
img: "Mat",
|
||||||
|
/,
|
||||||
|
*,
|
||||||
|
fix_rects: bool = True,
|
||||||
|
contours_filter: Optional[_ContourFilter] = None,
|
||||||
|
rects_filter: Optional[_RectsFilter] = None,
|
||||||
|
):
|
||||||
|
"""
|
||||||
|
:param img: grayscaled roi
|
||||||
|
"""
|
||||||
|
|
||||||
|
try:
|
||||||
|
cnts, _ = cv2.findContours(img, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
||||||
|
if contours_filter:
|
||||||
|
cnts = list(filter(contours_filter, cnts))
|
||||||
|
|
||||||
|
rects = [cv2.boundingRect(cnt) for cnt in cnts]
|
||||||
|
if fix_rects and rects_filter:
|
||||||
|
rects = FixRects.connect_broken(rects, img.shape[1], img.shape[0]) # type: ignore
|
||||||
|
rects = list(filter(rects_filter, rects))
|
||||||
|
rects = FixRects.split_connected(img, rects)
|
||||||
|
elif fix_rects:
|
||||||
|
rects = FixRects.connect_broken(rects, img.shape[1], img.shape[0]) # type: ignore
|
||||||
|
rects = FixRects.split_connected(img, rects)
|
||||||
|
elif rects_filter:
|
||||||
|
rects = list(filter(rects_filter, rects))
|
||||||
|
|
||||||
|
rects = sorted(rects, key=lambda r: r[0])
|
||||||
|
|
||||||
|
digits = []
|
||||||
|
for rect in rects:
|
||||||
|
digit = crop_xywh(img, rect)
|
||||||
|
digit = resize_fill_square(digit, 20)
|
||||||
|
digits.append(digit)
|
||||||
|
samples = preprocess_hog(digits)
|
||||||
|
return ocr_digit_samples_knn(samples, self.model)
|
||||||
|
except Exception:
|
||||||
|
logger.exception("Error occurred during KNearest OCR")
|
||||||
|
return None
|
||||||
|
|
||||||
|
def result(
|
||||||
|
self,
|
||||||
|
img: "Mat",
|
||||||
|
/,
|
||||||
|
*,
|
||||||
|
fix_rects: bool = True,
|
||||||
|
contours_filter: Optional[_ContourFilter] = None,
|
||||||
|
rects_filter: Optional[_RectsFilter] = None,
|
||||||
|
):
|
||||||
|
"""
|
||||||
|
:param img: grayscaled roi
|
||||||
|
"""
|
||||||
|
|
||||||
|
raw = self.result_raw(
|
||||||
|
img,
|
||||||
|
fix_rects=fix_rects,
|
||||||
|
contours_filter=contours_filter,
|
||||||
|
rects_filter=rects_filter,
|
||||||
|
)
|
||||||
|
return (
|
||||||
|
"".join(["".join(str(r) for r in raw if r > -1)])
|
||||||
|
if raw is not None
|
||||||
|
else None
|
||||||
|
)
|
3
src/arcaea_offline_ocr/scenarios/b30/__init__.py
Normal file
3
src/arcaea_offline_ocr/scenarios/b30/__init__.py
Normal file
@ -0,0 +1,3 @@
|
|||||||
|
from .chieri import ChieriBotV4Best30Scenario
|
||||||
|
|
||||||
|
__all__ = ["ChieriBotV4Best30Scenario"]
|
22
src/arcaea_offline_ocr/scenarios/b30/base.py
Normal file
22
src/arcaea_offline_ocr/scenarios/b30/base.py
Normal file
@ -0,0 +1,22 @@
|
|||||||
|
from abc import abstractmethod
|
||||||
|
from typing import TYPE_CHECKING, List
|
||||||
|
|
||||||
|
from arcaea_offline_ocr.scenarios.base import OcrScenario, OcrScenarioResult
|
||||||
|
|
||||||
|
if TYPE_CHECKING:
|
||||||
|
from arcaea_offline_ocr.types import Mat
|
||||||
|
|
||||||
|
|
||||||
|
class Best30Scenario(OcrScenario):
|
||||||
|
@abstractmethod
|
||||||
|
def components(self, img: "Mat", /) -> List["Mat"]: ...
|
||||||
|
|
||||||
|
@abstractmethod
|
||||||
|
def result(self, component_img: "Mat", /, *args, **kwargs) -> OcrScenarioResult: ...
|
||||||
|
|
||||||
|
@abstractmethod
|
||||||
|
def results(self, img: "Mat", /, *args, **kwargs) -> List[OcrScenarioResult]:
|
||||||
|
"""
|
||||||
|
Commonly a shorthand for `[self.result(comp) for comp in self.components(img)]`
|
||||||
|
"""
|
||||||
|
...
|
3
src/arcaea_offline_ocr/scenarios/b30/chieri/__init__.py
Normal file
3
src/arcaea_offline_ocr/scenarios/b30/chieri/__init__.py
Normal file
@ -0,0 +1,3 @@
|
|||||||
|
from .v4 import ChieriBotV4Best30Scenario
|
||||||
|
|
||||||
|
__all__ = ["ChieriBotV4Best30Scenario"]
|
@ -0,0 +1,3 @@
|
|||||||
|
from .impl import ChieriBotV4Best30Scenario
|
||||||
|
|
||||||
|
__all__ = ["ChieriBotV4Best30Scenario"]
|
@ -27,11 +27,11 @@ FAR_BG_MAX_HSV = np.array([20, 255, 255], np.uint8)
|
|||||||
LOST_BG_MIN_HSV = np.array([115, 60, 150], np.uint8)
|
LOST_BG_MIN_HSV = np.array([115, 60, 150], np.uint8)
|
||||||
LOST_BG_MAX_HSV = np.array([140, 255, 255], np.uint8)
|
LOST_BG_MAX_HSV = np.array([140, 255, 255], np.uint8)
|
||||||
|
|
||||||
BYD_MIN_HSV = (158, 120, 0)
|
BYD_MIN_HSV = np.array([158, 120, 0], np.uint8)
|
||||||
BYD_MAX_HSV = (172, 255, 255)
|
BYD_MAX_HSV = np.array([172, 255, 255], np.uint8)
|
||||||
|
|
||||||
FTR_MIN_HSV = (145, 70, 0)
|
FTR_MIN_HSV = np.array([145, 70, 0], np.uint8)
|
||||||
FTR_MAX_HSV = (160, 255, 255)
|
FTR_MAX_HSV = np.array([160, 255, 255], np.uint8)
|
||||||
|
|
||||||
PRS_MIN_HSV = (45, 60, 0)
|
PRS_MIN_HSV = np.array([45, 60, 0], np.uint8)
|
||||||
PRS_MAX_HSV = (70, 255, 255)
|
PRS_MAX_HSV = np.array([70, 255, 255], np.uint8)
|
@ -1,57 +1,47 @@
|
|||||||
from math import floor
|
|
||||||
from typing import List, Optional, Tuple
|
from typing import List, Optional, Tuple
|
||||||
|
|
||||||
import cv2
|
import cv2
|
||||||
import numpy as np
|
import numpy as np
|
||||||
from PIL import Image
|
|
||||||
|
|
||||||
from ....crop import crop_xywh
|
from arcaea_offline_ocr.crop import crop_xywh
|
||||||
from ....ocr import FixRects, ocr_digits_by_contour_knn, preprocess_hog
|
from arcaea_offline_ocr.providers import (
|
||||||
from ....phash_db import ImagePHashDatabase
|
ImageCategory,
|
||||||
from ....sift_db import SIFTDatabase
|
ImageIdProvider,
|
||||||
from ....types import Mat, cv2_ml_KNearest
|
OcrKNearestTextProvider,
|
||||||
from ....utils import construct_int_xywh_rect
|
)
|
||||||
from ...shared import B30OcrResultItem
|
from arcaea_offline_ocr.scenarios.b30.base import Best30Scenario
|
||||||
from .colors import *
|
from arcaea_offline_ocr.scenarios.base import OcrScenarioResult
|
||||||
|
from arcaea_offline_ocr.types import Mat
|
||||||
|
|
||||||
|
from .colors import (
|
||||||
|
BYD_MAX_HSV,
|
||||||
|
BYD_MIN_HSV,
|
||||||
|
FAR_BG_MAX_HSV,
|
||||||
|
FAR_BG_MIN_HSV,
|
||||||
|
FTR_MAX_HSV,
|
||||||
|
FTR_MIN_HSV,
|
||||||
|
LOST_BG_MAX_HSV,
|
||||||
|
LOST_BG_MIN_HSV,
|
||||||
|
PRS_MAX_HSV,
|
||||||
|
PRS_MIN_HSV,
|
||||||
|
PURE_BG_MAX_HSV,
|
||||||
|
PURE_BG_MIN_HSV,
|
||||||
|
)
|
||||||
from .rois import ChieriBotV4Rois
|
from .rois import ChieriBotV4Rois
|
||||||
|
|
||||||
|
|
||||||
class ChieriBotV4Ocr:
|
class ChieriBotV4Best30Scenario(Best30Scenario):
|
||||||
def __init__(
|
def __init__(
|
||||||
self,
|
self,
|
||||||
score_knn: cv2_ml_KNearest,
|
score_knn_provider: OcrKNearestTextProvider,
|
||||||
pfl_knn: cv2_ml_KNearest,
|
pfl_knn_provider: OcrKNearestTextProvider,
|
||||||
phash_db: ImagePHashDatabase,
|
image_id_provider: ImageIdProvider,
|
||||||
factor: Optional[float] = 1.0,
|
factor: float = 1.0,
|
||||||
):
|
):
|
||||||
self.__score_knn = score_knn
|
|
||||||
self.__pfl_knn = pfl_knn
|
|
||||||
self.__phash_db = phash_db
|
|
||||||
self.__rois = ChieriBotV4Rois(factor)
|
self.__rois = ChieriBotV4Rois(factor)
|
||||||
|
self.pfl_knn_provider = pfl_knn_provider
|
||||||
@property
|
self.score_knn_provider = score_knn_provider
|
||||||
def score_knn(self):
|
self.image_id_provider = image_id_provider
|
||||||
return self.__score_knn
|
|
||||||
|
|
||||||
@score_knn.setter
|
|
||||||
def score_knn(self, knn_digits_model: Mat):
|
|
||||||
self.__score_knn = knn_digits_model
|
|
||||||
|
|
||||||
@property
|
|
||||||
def pfl_knn(self):
|
|
||||||
return self.__pfl_knn
|
|
||||||
|
|
||||||
@pfl_knn.setter
|
|
||||||
def pfl_knn(self, knn_digits_model: Mat):
|
|
||||||
self.__pfl_knn = knn_digits_model
|
|
||||||
|
|
||||||
@property
|
|
||||||
def phash_db(self):
|
|
||||||
return self.__phash_db
|
|
||||||
|
|
||||||
@phash_db.setter
|
|
||||||
def phash_db(self, phash_db: ImagePHashDatabase):
|
|
||||||
self.__phash_db = phash_db
|
|
||||||
|
|
||||||
@property
|
@property
|
||||||
def rois(self):
|
def rois(self):
|
||||||
@ -69,9 +59,8 @@ class ChieriBotV4Ocr:
|
|||||||
self.factor = img.shape[0] / 4400
|
self.factor = img.shape[0] / 4400
|
||||||
|
|
||||||
def ocr_component_rating_class(self, component_bgr: Mat) -> int:
|
def ocr_component_rating_class(self, component_bgr: Mat) -> int:
|
||||||
rating_class_rect = construct_int_xywh_rect(
|
rating_class_rect = self.rois.component_rois.rating_class_rect.rounded()
|
||||||
self.rois.component_rois.rating_class_rect
|
|
||||||
)
|
|
||||||
rating_class_roi = crop_xywh(component_bgr, rating_class_rect)
|
rating_class_roi = crop_xywh(component_bgr, rating_class_rect)
|
||||||
rating_class_roi = cv2.cvtColor(rating_class_roi, cv2.COLOR_BGR2HSV)
|
rating_class_roi = cv2.cvtColor(rating_class_roi, cv2.COLOR_BGR2HSV)
|
||||||
rating_class_masks = [
|
rating_class_masks = [
|
||||||
@ -85,39 +74,16 @@ class ChieriBotV4Ocr:
|
|||||||
else:
|
else:
|
||||||
return max(enumerate(rating_class_results), key=lambda i: i[1])[0] + 1
|
return max(enumerate(rating_class_results), key=lambda i: i[1])[0] + 1
|
||||||
|
|
||||||
# def ocr_component_title(self, component_bgr: Mat) -> str:
|
def ocr_component_song_id_results(self, component_bgr: Mat):
|
||||||
# # sourcery skip: inline-immediately-returned-variable
|
jacket_rect = self.rois.component_rois.jacket_rect.floored()
|
||||||
# title_rect = construct_int_xywh_rect(self.rois.component_rois.title_rect)
|
|
||||||
# title_roi = crop_xywh(component_bgr, title_rect)
|
|
||||||
# ocr_result = self.sift_db.ocr(title_roi, cls=False)
|
|
||||||
# title = ocr_result[0][-1][1][0] if ocr_result and ocr_result[0] else ""
|
|
||||||
# return title
|
|
||||||
|
|
||||||
def ocr_component_song_id(self, component_bgr: Mat):
|
|
||||||
jacket_rect = construct_int_xywh_rect(
|
|
||||||
self.rois.component_rois.jacket_rect, floor
|
|
||||||
)
|
|
||||||
jacket_roi = cv2.cvtColor(
|
jacket_roi = cv2.cvtColor(
|
||||||
crop_xywh(component_bgr, jacket_rect), cv2.COLOR_BGR2GRAY
|
crop_xywh(component_bgr, jacket_rect), cv2.COLOR_BGR2GRAY
|
||||||
)
|
)
|
||||||
return self.phash_db.lookup_image(Image.fromarray(jacket_roi))[0]
|
return self.image_id_provider.results(jacket_roi, ImageCategory.JACKET)
|
||||||
|
|
||||||
# def ocr_component_score_paddle(self, component_bgr: Mat) -> int:
|
|
||||||
# # sourcery skip: inline-immediately-returned-variable
|
|
||||||
# score_rect = construct_int_xywh_rect(self.rois.component_rois.score_rect)
|
|
||||||
# score_roi = cv2.cvtColor(
|
|
||||||
# crop_xywh(component_bgr, score_rect), cv2.COLOR_BGR2GRAY
|
|
||||||
# )
|
|
||||||
# _, score_roi = cv2.threshold(
|
|
||||||
# score_roi, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU
|
|
||||||
# )
|
|
||||||
# score_str = self.sift_db.ocr(score_roi, cls=False)[0][-1][1][0]
|
|
||||||
# score = int(score_str.replace("'", "").replace(" ", ""))
|
|
||||||
# return score
|
|
||||||
|
|
||||||
def ocr_component_score_knn(self, component_bgr: Mat) -> int:
|
def ocr_component_score_knn(self, component_bgr: Mat) -> int:
|
||||||
# sourcery skip: inline-immediately-returned-variable
|
# sourcery skip: inline-immediately-returned-variable
|
||||||
score_rect = construct_int_xywh_rect(self.rois.component_rois.score_rect)
|
score_rect = self.rois.component_rois.score_rect.rounded()
|
||||||
score_roi = cv2.cvtColor(
|
score_roi = cv2.cvtColor(
|
||||||
crop_xywh(component_bgr, score_rect), cv2.COLOR_BGR2GRAY
|
crop_xywh(component_bgr, score_rect), cv2.COLOR_BGR2GRAY
|
||||||
)
|
)
|
||||||
@ -135,9 +101,13 @@ class ChieriBotV4Ocr:
|
|||||||
if rect[3] > score_roi.shape[0] * 0.5:
|
if rect[3] > score_roi.shape[0] * 0.5:
|
||||||
continue
|
continue
|
||||||
score_roi = cv2.fillPoly(score_roi, [contour], 0)
|
score_roi = cv2.fillPoly(score_roi, [contour], 0)
|
||||||
return ocr_digits_by_contour_knn(score_roi, self.score_knn)
|
|
||||||
|
|
||||||
def find_pfl_rects(self, component_pfl_processed: Mat) -> List[List[int]]:
|
ocr_result = self.score_knn_provider.result(score_roi)
|
||||||
|
return int(ocr_result) if ocr_result else 0
|
||||||
|
|
||||||
|
def find_pfl_rects(
|
||||||
|
self, component_pfl_processed: Mat
|
||||||
|
) -> List[Tuple[int, int, int, int]]:
|
||||||
# sourcery skip: inline-immediately-returned-variable
|
# sourcery skip: inline-immediately-returned-variable
|
||||||
pfl_roi_find = cv2.morphologyEx(
|
pfl_roi_find = cv2.morphologyEx(
|
||||||
component_pfl_processed,
|
component_pfl_processed,
|
||||||
@ -164,7 +134,7 @@ class ChieriBotV4Ocr:
|
|||||||
return pfl_rects_adjusted
|
return pfl_rects_adjusted
|
||||||
|
|
||||||
def preprocess_component_pfl(self, component_bgr: Mat) -> Mat:
|
def preprocess_component_pfl(self, component_bgr: Mat) -> Mat:
|
||||||
pfl_rect = construct_int_xywh_rect(self.rois.component_rois.pfl_rect)
|
pfl_rect = self.rois.component_rois.pfl_rect.rounded()
|
||||||
pfl_roi = crop_xywh(component_bgr, pfl_rect)
|
pfl_roi = crop_xywh(component_bgr, pfl_rect)
|
||||||
pfl_roi_hsv = cv2.cvtColor(pfl_roi, cv2.COLOR_BGR2HSV)
|
pfl_roi_hsv = cv2.cvtColor(pfl_roi, cv2.COLOR_BGR2HSV)
|
||||||
|
|
||||||
@ -211,60 +181,43 @@ class ChieriBotV4Ocr:
|
|||||||
pure_far_lost = []
|
pure_far_lost = []
|
||||||
for pfl_roi_rect in pfl_rects:
|
for pfl_roi_rect in pfl_rects:
|
||||||
roi = crop_xywh(pfl_roi, pfl_roi_rect)
|
roi = crop_xywh(pfl_roi, pfl_roi_rect)
|
||||||
digit_contours, _ = cv2.findContours(
|
result = self.pfl_knn_provider.result(roi)
|
||||||
roi, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE
|
pure_far_lost.append(int(result) if result else None)
|
||||||
)
|
|
||||||
digit_rects = [cv2.boundingRect(c) for c in digit_contours]
|
|
||||||
digit_rects = FixRects.connect_broken(
|
|
||||||
digit_rects, roi.shape[1], roi.shape[0]
|
|
||||||
)
|
|
||||||
digit_rects = FixRects.split_connected(roi, digit_rects)
|
|
||||||
digit_rects = sorted(digit_rects, key=lambda r: r[0])
|
|
||||||
digits = []
|
|
||||||
for digit_rect in digit_rects:
|
|
||||||
digit = crop_xywh(roi, digit_rect)
|
|
||||||
digit = cv2.resize(digit, (20, 20))
|
|
||||||
digits.append(digit)
|
|
||||||
samples = preprocess_hog(digits)
|
|
||||||
|
|
||||||
_, results, _, _ = self.pfl_knn.findNearest(samples, 4)
|
|
||||||
results = [str(int(i)) for i in results.ravel()]
|
|
||||||
pure_far_lost.append(int("".join(results)))
|
|
||||||
return tuple(pure_far_lost)
|
return tuple(pure_far_lost)
|
||||||
except Exception:
|
except Exception:
|
||||||
return (None, None, None)
|
return (None, None, None)
|
||||||
|
|
||||||
# def ocr_component_date(self, component_bgr: Mat):
|
def ocr_component(self, component_bgr: Mat) -> OcrScenarioResult:
|
||||||
# date_rect = construct_int_xywh_rect(self.rois.component_rois.date_rect)
|
|
||||||
# date_roi = cv2.cvtColor(crop_xywh(component_bgr, date_rect), cv2.COLOR_BGR2GRAY)
|
|
||||||
# _, date_roi = cv2.threshold(
|
|
||||||
# date_roi, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU
|
|
||||||
# )
|
|
||||||
# date_str = self.sift_db.ocr(date_roi, cls=False)[0][-1][1][0]
|
|
||||||
# return date_str
|
|
||||||
|
|
||||||
def ocr_component(self, component_bgr: Mat) -> B30OcrResultItem:
|
|
||||||
component_blur = cv2.GaussianBlur(component_bgr, (5, 5), 0)
|
component_blur = cv2.GaussianBlur(component_bgr, (5, 5), 0)
|
||||||
rating_class = self.ocr_component_rating_class(component_blur)
|
rating_class = self.ocr_component_rating_class(component_blur)
|
||||||
song_id = self.ocr_component_song_id(component_bgr)
|
song_id_results = self.ocr_component_song_id_results(component_bgr)
|
||||||
# title = self.ocr_component_title(component_blur)
|
|
||||||
# score = self.ocr_component_score(component_blur)
|
# score = self.ocr_component_score(component_blur)
|
||||||
score = self.ocr_component_score_knn(component_bgr)
|
score = self.ocr_component_score_knn(component_bgr)
|
||||||
pure, far, lost = self.ocr_component_pfl(component_bgr)
|
pure, far, lost = self.ocr_component_pfl(component_bgr)
|
||||||
return B30OcrResultItem(
|
return OcrScenarioResult(
|
||||||
song_id=song_id,
|
song_id=song_id_results[0].image_id,
|
||||||
|
song_id_results=song_id_results,
|
||||||
rating_class=rating_class,
|
rating_class=rating_class,
|
||||||
# title=title,
|
|
||||||
score=score,
|
score=score,
|
||||||
pure=pure,
|
pure=pure,
|
||||||
far=far,
|
far=far,
|
||||||
lost=lost,
|
lost=lost,
|
||||||
date=None,
|
played_at=None,
|
||||||
)
|
)
|
||||||
|
|
||||||
def ocr(self, img_bgr: Mat) -> List[B30OcrResultItem]:
|
def components(self, img: Mat, /):
|
||||||
self.set_factor(img_bgr)
|
"""
|
||||||
return [
|
:param img: BGR format image
|
||||||
self.ocr_component(component_bgr)
|
"""
|
||||||
for component_bgr in self.rois.components(img_bgr)
|
self.set_factor(img)
|
||||||
]
|
return self.rois.components(img)
|
||||||
|
|
||||||
|
def result(self, component_img: Mat, /):
|
||||||
|
return self.ocr_component(component_img)
|
||||||
|
|
||||||
|
def results(self, img: Mat, /) -> List[OcrScenarioResult]:
|
||||||
|
"""
|
||||||
|
:param img: BGR format image
|
||||||
|
"""
|
||||||
|
return [self.ocr_component(component) for component in self.components(img)]
|
@ -1,12 +1,11 @@
|
|||||||
from typing import List, Optional
|
from typing import List
|
||||||
|
|
||||||
from ....crop import crop_xywh
|
from arcaea_offline_ocr.crop import crop_xywh
|
||||||
from ....types import Mat, XYWHRect
|
from arcaea_offline_ocr.types import Mat, XYWHRect
|
||||||
from ....utils import apply_factor, construct_int_xywh_rect
|
|
||||||
|
|
||||||
|
|
||||||
class ChieriBotV4ComponentRois:
|
class ChieriBotV4ComponentRois:
|
||||||
def __init__(self, factor: Optional[float] = 1.0):
|
def __init__(self, factor: float = 1.0):
|
||||||
self.__factor = factor
|
self.__factor = factor
|
||||||
|
|
||||||
@property
|
@property
|
||||||
@ -19,43 +18,43 @@ class ChieriBotV4ComponentRois:
|
|||||||
|
|
||||||
@property
|
@property
|
||||||
def top_font_color_detect(self):
|
def top_font_color_detect(self):
|
||||||
return apply_factor((35, 10, 120, 100), self.factor)
|
return XYWHRect(35, 10, 120, 100), self.factor
|
||||||
|
|
||||||
@property
|
@property
|
||||||
def bottom_font_color_detect(self):
|
def bottom_font_color_detect(self):
|
||||||
return apply_factor((30, 125, 175, 110), self.factor)
|
return XYWHRect(30, 125, 175, 110) * self.factor
|
||||||
|
|
||||||
@property
|
@property
|
||||||
def bg_point(self):
|
def bg_point(self):
|
||||||
return apply_factor((75, 10), self.factor)
|
return (75 * self.factor, 10 * self.factor)
|
||||||
|
|
||||||
@property
|
@property
|
||||||
def rating_class_rect(self):
|
def rating_class_rect(self):
|
||||||
return apply_factor((21, 40, 7, 20), self.factor)
|
return XYWHRect(21, 40, 7, 20) * self.factor
|
||||||
|
|
||||||
@property
|
@property
|
||||||
def title_rect(self):
|
def title_rect(self):
|
||||||
return apply_factor((35, 10, 430, 50), self.factor)
|
return XYWHRect(35, 10, 430, 50) * self.factor
|
||||||
|
|
||||||
@property
|
@property
|
||||||
def jacket_rect(self):
|
def jacket_rect(self):
|
||||||
return apply_factor((263, 0, 239, 239), self.factor)
|
return XYWHRect(263, 0, 239, 239) * self.factor
|
||||||
|
|
||||||
@property
|
@property
|
||||||
def score_rect(self):
|
def score_rect(self):
|
||||||
return apply_factor((30, 60, 270, 55), self.factor)
|
return XYWHRect(30, 60, 270, 55) * self.factor
|
||||||
|
|
||||||
@property
|
@property
|
||||||
def pfl_rect(self):
|
def pfl_rect(self):
|
||||||
return apply_factor((50, 125, 80, 100), self.factor)
|
return XYWHRect(50, 125, 80, 100) * self.factor
|
||||||
|
|
||||||
@property
|
@property
|
||||||
def date_rect(self):
|
def date_rect(self):
|
||||||
return apply_factor((205, 200, 225, 25), self.factor)
|
return XYWHRect(205, 200, 225, 25) * self.factor
|
||||||
|
|
||||||
|
|
||||||
class ChieriBotV4Rois:
|
class ChieriBotV4Rois:
|
||||||
def __init__(self, factor: Optional[float] = 1.0):
|
def __init__(self, factor: float = 1.0):
|
||||||
self.__factor = factor
|
self.__factor = factor
|
||||||
self.__component_rois = ChieriBotV4ComponentRois(factor)
|
self.__component_rois = ChieriBotV4ComponentRois(factor)
|
||||||
|
|
||||||
@ -74,54 +73,53 @@ class ChieriBotV4Rois:
|
|||||||
|
|
||||||
@property
|
@property
|
||||||
def top(self):
|
def top(self):
|
||||||
return apply_factor(823, self.factor)
|
return 823 * self.factor
|
||||||
|
|
||||||
@property
|
@property
|
||||||
def left(self):
|
def left(self):
|
||||||
return apply_factor(107, self.factor)
|
return 107 * self.factor
|
||||||
|
|
||||||
@property
|
@property
|
||||||
def width(self):
|
def width(self):
|
||||||
return apply_factor(502, self.factor)
|
return 502 * self.factor
|
||||||
|
|
||||||
@property
|
@property
|
||||||
def height(self):
|
def height(self):
|
||||||
return apply_factor(240, self.factor)
|
return 240 * self.factor
|
||||||
|
|
||||||
@property
|
@property
|
||||||
def vertical_gap(self):
|
def vertical_gap(self):
|
||||||
return apply_factor(74, self.factor)
|
return 74 * self.factor
|
||||||
|
|
||||||
@property
|
@property
|
||||||
def horizontal_gap(self):
|
def horizontal_gap(self):
|
||||||
return apply_factor(40, self.factor)
|
return 40 * self.factor
|
||||||
|
|
||||||
@property
|
@property
|
||||||
def horizontal_items(self):
|
def horizontal_items(self):
|
||||||
return 3
|
return 3
|
||||||
|
|
||||||
@property
|
vertical_items = 10
|
||||||
def vertical_items(self):
|
|
||||||
return 10
|
|
||||||
|
|
||||||
@property
|
@property
|
||||||
def b33_vertical_gap(self):
|
def b33_vertical_gap(self):
|
||||||
return apply_factor(121, self.factor)
|
return 121 * self.factor
|
||||||
|
|
||||||
def components(self, img_bgr: Mat) -> List[Mat]:
|
def components(self, img_bgr: Mat) -> List[Mat]:
|
||||||
first_rect = XYWHRect(x=self.left, y=self.top, w=self.width, h=self.height)
|
first_rect = XYWHRect(x=self.left, y=self.top, w=self.width, h=self.height)
|
||||||
results = []
|
results = []
|
||||||
|
|
||||||
|
last_rect = first_rect
|
||||||
for vi in range(self.vertical_items):
|
for vi in range(self.vertical_items):
|
||||||
rect = XYWHRect(*first_rect)
|
rect = XYWHRect(*first_rect)
|
||||||
rect += (0, (self.vertical_gap + self.height) * vi, 0, 0)
|
rect += (0, (self.vertical_gap + self.height) * vi, 0, 0)
|
||||||
for hi in range(self.horizontal_items):
|
for hi in range(self.horizontal_items):
|
||||||
if hi > 0:
|
if hi > 0:
|
||||||
rect += ((self.width + self.horizontal_gap), 0, 0, 0)
|
rect += ((self.width + self.horizontal_gap), 0, 0, 0)
|
||||||
int_rect = construct_int_xywh_rect(rect)
|
results.append(crop_xywh(img_bgr, rect.rounded()))
|
||||||
results.append(crop_xywh(img_bgr, int_rect))
|
last_rect = rect
|
||||||
|
|
||||||
rect += (
|
last_rect += (
|
||||||
-(self.width + self.horizontal_gap) * 2,
|
-(self.width + self.horizontal_gap) * 2,
|
||||||
self.height + self.b33_vertical_gap,
|
self.height + self.b33_vertical_gap,
|
||||||
0,
|
0,
|
||||||
@ -129,8 +127,7 @@ class ChieriBotV4Rois:
|
|||||||
)
|
)
|
||||||
for hi in range(self.horizontal_items):
|
for hi in range(self.horizontal_items):
|
||||||
if hi > 0:
|
if hi > 0:
|
||||||
rect += ((self.width + self.horizontal_gap), 0, 0, 0)
|
last_rect += ((self.width + self.horizontal_gap), 0, 0, 0)
|
||||||
int_rect = construct_int_xywh_rect(rect)
|
results.append(crop_xywh(img_bgr, last_rect.rounded()))
|
||||||
results.append(crop_xywh(img_bgr, int_rect))
|
|
||||||
|
|
||||||
return results
|
return results
|
38
src/arcaea_offline_ocr/scenarios/base.py
Normal file
38
src/arcaea_offline_ocr/scenarios/base.py
Normal file
@ -0,0 +1,38 @@
|
|||||||
|
from abc import ABC
|
||||||
|
from dataclasses import dataclass, field
|
||||||
|
from datetime import datetime
|
||||||
|
from typing import Sequence, Optional
|
||||||
|
|
||||||
|
from arcaea_offline_ocr.providers import ImageIdProviderResult
|
||||||
|
|
||||||
|
|
||||||
|
@dataclass(kw_only=True)
|
||||||
|
class OcrScenarioResult:
|
||||||
|
song_id: str
|
||||||
|
rating_class: int
|
||||||
|
score: int
|
||||||
|
|
||||||
|
song_id_results: Sequence[ImageIdProviderResult] = field(default_factory=lambda: [])
|
||||||
|
partner_id_results: Sequence[ImageIdProviderResult] = field(
|
||||||
|
default_factory=lambda: []
|
||||||
|
)
|
||||||
|
|
||||||
|
pure: Optional[int] = None
|
||||||
|
pure_inaccurate: Optional[int] = None
|
||||||
|
pure_early: Optional[int] = None
|
||||||
|
pure_late: Optional[int] = None
|
||||||
|
far: Optional[int] = None
|
||||||
|
far_inaccurate: Optional[int] = None
|
||||||
|
far_early: Optional[int] = None
|
||||||
|
far_late: Optional[int] = None
|
||||||
|
lost: Optional[int] = None
|
||||||
|
|
||||||
|
played_at: Optional[datetime] = None
|
||||||
|
max_recall: Optional[int] = None
|
||||||
|
clear_status: Optional[int] = None
|
||||||
|
clear_type: Optional[int] = None
|
||||||
|
modifier: Optional[int] = None
|
||||||
|
|
||||||
|
|
||||||
|
class OcrScenario(ABC):
|
||||||
|
pass
|
13
src/arcaea_offline_ocr/scenarios/device/__init__.py
Normal file
13
src/arcaea_offline_ocr/scenarios/device/__init__.py
Normal file
@ -0,0 +1,13 @@
|
|||||||
|
from .extractor import DeviceRoisExtractor
|
||||||
|
from .impl import DeviceScenario
|
||||||
|
from .masker import DeviceRoisMaskerAutoT1, DeviceRoisMaskerAutoT2
|
||||||
|
from .rois import DeviceRoisAutoT1, DeviceRoisAutoT2
|
||||||
|
|
||||||
|
__all__ = [
|
||||||
|
"DeviceRoisMaskerAutoT1",
|
||||||
|
"DeviceRoisMaskerAutoT2",
|
||||||
|
"DeviceRoisAutoT1",
|
||||||
|
"DeviceRoisAutoT2",
|
||||||
|
"DeviceRoisExtractor",
|
||||||
|
"DeviceScenario",
|
||||||
|
]
|
8
src/arcaea_offline_ocr/scenarios/device/base.py
Normal file
8
src/arcaea_offline_ocr/scenarios/device/base.py
Normal file
@ -0,0 +1,8 @@
|
|||||||
|
from abc import abstractmethod
|
||||||
|
|
||||||
|
from arcaea_offline_ocr.scenarios.base import OcrScenario, OcrScenarioResult
|
||||||
|
|
||||||
|
|
||||||
|
class DeviceScenarioBase(OcrScenario):
|
||||||
|
@abstractmethod
|
||||||
|
def result(self) -> OcrScenarioResult: ...
|
@ -0,0 +1,3 @@
|
|||||||
|
from .base import DeviceRoisExtractor
|
||||||
|
|
||||||
|
__all__ = ["DeviceRoisExtractor"]
|
46
src/arcaea_offline_ocr/scenarios/device/extractor/base.py
Normal file
46
src/arcaea_offline_ocr/scenarios/device/extractor/base.py
Normal file
@ -0,0 +1,46 @@
|
|||||||
|
from arcaea_offline_ocr.crop import crop_xywh
|
||||||
|
from arcaea_offline_ocr.types import Mat
|
||||||
|
|
||||||
|
from ..rois.base import DeviceRois
|
||||||
|
|
||||||
|
|
||||||
|
class DeviceRoisExtractor:
|
||||||
|
def __init__(self, img: Mat, rois: DeviceRois):
|
||||||
|
self.img = img
|
||||||
|
self.sizes = rois
|
||||||
|
|
||||||
|
@property
|
||||||
|
def pure(self):
|
||||||
|
return crop_xywh(self.img, self.sizes.pure.rounded())
|
||||||
|
|
||||||
|
@property
|
||||||
|
def far(self):
|
||||||
|
return crop_xywh(self.img, self.sizes.far.rounded())
|
||||||
|
|
||||||
|
@property
|
||||||
|
def lost(self):
|
||||||
|
return crop_xywh(self.img, self.sizes.lost.rounded())
|
||||||
|
|
||||||
|
@property
|
||||||
|
def score(self):
|
||||||
|
return crop_xywh(self.img, self.sizes.score.rounded())
|
||||||
|
|
||||||
|
@property
|
||||||
|
def jacket(self):
|
||||||
|
return crop_xywh(self.img, self.sizes.jacket.rounded())
|
||||||
|
|
||||||
|
@property
|
||||||
|
def rating_class(self):
|
||||||
|
return crop_xywh(self.img, self.sizes.rating_class.rounded())
|
||||||
|
|
||||||
|
@property
|
||||||
|
def max_recall(self):
|
||||||
|
return crop_xywh(self.img, self.sizes.max_recall.rounded())
|
||||||
|
|
||||||
|
@property
|
||||||
|
def clear_status(self):
|
||||||
|
return crop_xywh(self.img, self.sizes.clear_status.rounded())
|
||||||
|
|
||||||
|
@property
|
||||||
|
def partner_icon(self):
|
||||||
|
return crop_xywh(self.img, self.sizes.partner_icon.rounded())
|
155
src/arcaea_offline_ocr/scenarios/device/impl.py
Normal file
155
src/arcaea_offline_ocr/scenarios/device/impl.py
Normal file
@ -0,0 +1,155 @@
|
|||||||
|
import cv2
|
||||||
|
import numpy as np
|
||||||
|
|
||||||
|
from arcaea_offline_ocr.providers import (
|
||||||
|
ImageCategory,
|
||||||
|
ImageIdProvider,
|
||||||
|
OcrKNearestTextProvider,
|
||||||
|
)
|
||||||
|
from arcaea_offline_ocr.scenarios.base import OcrScenarioResult
|
||||||
|
from arcaea_offline_ocr.types import Mat
|
||||||
|
|
||||||
|
from .base import DeviceScenarioBase
|
||||||
|
from .extractor import DeviceRoisExtractor
|
||||||
|
from .masker import DeviceRoisMasker
|
||||||
|
|
||||||
|
|
||||||
|
class DeviceScenario(DeviceScenarioBase):
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
extractor: DeviceRoisExtractor,
|
||||||
|
masker: DeviceRoisMasker,
|
||||||
|
knn_provider: OcrKNearestTextProvider,
|
||||||
|
image_id_provider: ImageIdProvider,
|
||||||
|
):
|
||||||
|
self.extractor = extractor
|
||||||
|
self.masker = masker
|
||||||
|
self.knn_provider = knn_provider
|
||||||
|
self.image_id_provider = image_id_provider
|
||||||
|
|
||||||
|
def pfl(self, roi_gray: Mat, factor: float = 1.25):
|
||||||
|
def contour_filter(cnt):
|
||||||
|
return cv2.contourArea(cnt) >= 5 * factor
|
||||||
|
|
||||||
|
contours = self.knn_provider.contours(roi_gray)
|
||||||
|
contours_filtered = self.knn_provider.contours(
|
||||||
|
roi_gray, contours_filter=contour_filter
|
||||||
|
)
|
||||||
|
|
||||||
|
roi_ocr = roi_gray.copy()
|
||||||
|
contours_filtered_flattened = {tuple(c.flatten()) for c in contours_filtered}
|
||||||
|
for contour in contours:
|
||||||
|
if tuple(contour.flatten()) in contours_filtered_flattened:
|
||||||
|
continue
|
||||||
|
roi_ocr = cv2.fillPoly(roi_ocr, [contour], [0])
|
||||||
|
|
||||||
|
ocr_result = self.knn_provider.result(
|
||||||
|
roi_ocr,
|
||||||
|
contours_filter=lambda cnt: cv2.contourArea(cnt) >= 5 * factor,
|
||||||
|
rects_filter=lambda rect: rect[2] >= 5 * factor and rect[3] >= 6 * factor,
|
||||||
|
)
|
||||||
|
|
||||||
|
return int(ocr_result) if ocr_result else 0
|
||||||
|
|
||||||
|
def pure(self):
|
||||||
|
return self.pfl(self.masker.pure(self.extractor.pure))
|
||||||
|
|
||||||
|
def far(self):
|
||||||
|
return self.pfl(self.masker.far(self.extractor.far))
|
||||||
|
|
||||||
|
def lost(self):
|
||||||
|
return self.pfl(self.masker.lost(self.extractor.lost))
|
||||||
|
|
||||||
|
def score(self):
|
||||||
|
roi = self.masker.score(self.extractor.score)
|
||||||
|
contours = self.knn_provider.contours(roi)
|
||||||
|
for contour in contours:
|
||||||
|
if (
|
||||||
|
cv2.boundingRect(contour)[3] < roi.shape[0] * 0.6
|
||||||
|
): # h < score_component_h * 0.6
|
||||||
|
roi = cv2.fillPoly(roi, [contour], [0])
|
||||||
|
ocr_result = self.knn_provider.result(roi)
|
||||||
|
return int(ocr_result) if ocr_result else 0
|
||||||
|
|
||||||
|
def rating_class(self):
|
||||||
|
roi = self.extractor.rating_class
|
||||||
|
results = [
|
||||||
|
self.masker.rating_class_pst(roi),
|
||||||
|
self.masker.rating_class_prs(roi),
|
||||||
|
self.masker.rating_class_ftr(roi),
|
||||||
|
self.masker.rating_class_byd(roi),
|
||||||
|
self.masker.rating_class_etr(roi),
|
||||||
|
]
|
||||||
|
return max(enumerate(results), key=lambda i: np.count_nonzero(i[1]))[0]
|
||||||
|
|
||||||
|
def max_recall(self):
|
||||||
|
ocr_result = self.knn_provider.result(
|
||||||
|
self.masker.max_recall(self.extractor.max_recall)
|
||||||
|
)
|
||||||
|
return int(ocr_result) if ocr_result else None
|
||||||
|
|
||||||
|
def clear_status(self):
|
||||||
|
roi = self.extractor.clear_status
|
||||||
|
results = [
|
||||||
|
self.masker.clear_status_track_lost(roi),
|
||||||
|
self.masker.clear_status_track_complete(roi),
|
||||||
|
self.masker.clear_status_full_recall(roi),
|
||||||
|
self.masker.clear_status_pure_memory(roi),
|
||||||
|
]
|
||||||
|
return max(enumerate(results), key=lambda i: np.count_nonzero(i[1]))[0]
|
||||||
|
|
||||||
|
def song_id_results(self):
|
||||||
|
return self.image_id_provider.results(
|
||||||
|
cv2.cvtColor(self.extractor.jacket, cv2.COLOR_BGR2GRAY),
|
||||||
|
ImageCategory.JACKET,
|
||||||
|
)
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def preprocess_char_icon(img_gray: Mat):
|
||||||
|
h, w = img_gray.shape[:2]
|
||||||
|
img = cv2.copyMakeBorder(img_gray, max(w - h, 0), 0, 0, 0, cv2.BORDER_REPLICATE)
|
||||||
|
h, w = img.shape[:2]
|
||||||
|
img = cv2.fillPoly(
|
||||||
|
img,
|
||||||
|
[
|
||||||
|
np.array([[0, 0], [round(w / 2), 0], [0, round(h / 2)]], np.int32),
|
||||||
|
np.array([[w, 0], [round(w / 2), 0], [w, round(h / 2)]], np.int32),
|
||||||
|
np.array([[0, h], [round(w / 2), h], [0, round(h / 2)]], np.int32),
|
||||||
|
np.array([[w, h], [round(w / 2), h], [w, round(h / 2)]], np.int32),
|
||||||
|
],
|
||||||
|
(128,),
|
||||||
|
)
|
||||||
|
return img
|
||||||
|
|
||||||
|
def partner_id_results(self):
|
||||||
|
return self.image_id_provider.results(
|
||||||
|
self.preprocess_char_icon(
|
||||||
|
cv2.cvtColor(self.extractor.partner_icon, cv2.COLOR_BGR2GRAY)
|
||||||
|
),
|
||||||
|
ImageCategory.PARTNER_ICON,
|
||||||
|
)
|
||||||
|
|
||||||
|
def result(self):
|
||||||
|
rating_class = self.rating_class()
|
||||||
|
pure = self.pure()
|
||||||
|
far = self.far()
|
||||||
|
lost = self.lost()
|
||||||
|
score = self.score()
|
||||||
|
max_recall = self.max_recall()
|
||||||
|
clear_status = self.clear_status()
|
||||||
|
|
||||||
|
song_id_results = self.song_id_results()
|
||||||
|
partner_id_results = self.partner_id_results()
|
||||||
|
|
||||||
|
return OcrScenarioResult(
|
||||||
|
song_id=song_id_results[0].image_id,
|
||||||
|
song_id_results=song_id_results,
|
||||||
|
rating_class=rating_class,
|
||||||
|
pure=pure,
|
||||||
|
far=far,
|
||||||
|
lost=lost,
|
||||||
|
score=score,
|
||||||
|
max_recall=max_recall,
|
||||||
|
partner_id_results=partner_id_results,
|
||||||
|
clear_status=clear_status,
|
||||||
|
)
|
@ -0,0 +1,9 @@
|
|||||||
|
from .auto import DeviceRoisMaskerAuto, DeviceRoisMaskerAutoT1, DeviceRoisMaskerAutoT2
|
||||||
|
from .base import DeviceRoisMasker
|
||||||
|
|
||||||
|
__all__ = [
|
||||||
|
"DeviceRoisMaskerAuto",
|
||||||
|
"DeviceRoisMaskerAutoT1",
|
||||||
|
"DeviceRoisMaskerAutoT2",
|
||||||
|
"DeviceRoisMasker",
|
||||||
|
]
|
230
src/arcaea_offline_ocr/scenarios/device/masker/auto.py
Normal file
230
src/arcaea_offline_ocr/scenarios/device/masker/auto.py
Normal file
@ -0,0 +1,230 @@
|
|||||||
|
import cv2
|
||||||
|
import numpy as np
|
||||||
|
|
||||||
|
from arcaea_offline_ocr.types import Mat
|
||||||
|
|
||||||
|
from .base import DeviceRoisMasker
|
||||||
|
|
||||||
|
|
||||||
|
class DeviceRoisMaskerAuto(DeviceRoisMasker):
|
||||||
|
@staticmethod
|
||||||
|
def mask_bgr_in_hsv(roi_bgr: Mat, hsv_lower: Mat, hsv_upper: Mat):
|
||||||
|
return cv2.inRange(
|
||||||
|
cv2.cvtColor(roi_bgr, cv2.COLOR_BGR2HSV), hsv_lower, hsv_upper
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
class DeviceRoisMaskerAutoT1(DeviceRoisMaskerAuto):
|
||||||
|
GRAY_BGR_MIN = np.array([50] * 3, np.uint8)
|
||||||
|
GRAY_BGR_MAX = np.array([160] * 3, np.uint8)
|
||||||
|
|
||||||
|
SCORE_HSV_MIN = np.array([0, 0, 180], np.uint8)
|
||||||
|
SCORE_HSV_MAX = np.array([179, 255, 255], np.uint8)
|
||||||
|
|
||||||
|
PST_HSV_MIN = np.array([100, 50, 80], np.uint8)
|
||||||
|
PST_HSV_MAX = np.array([100, 255, 255], np.uint8)
|
||||||
|
|
||||||
|
PRS_HSV_MIN = np.array([43, 40, 75], np.uint8)
|
||||||
|
PRS_HSV_MAX = np.array([50, 155, 190], np.uint8)
|
||||||
|
|
||||||
|
FTR_HSV_MIN = np.array([149, 30, 0], np.uint8)
|
||||||
|
FTR_HSV_MAX = np.array([155, 181, 150], np.uint8)
|
||||||
|
|
||||||
|
BYD_HSV_MIN = np.array([170, 50, 50], np.uint8)
|
||||||
|
BYD_HSV_MAX = np.array([179, 210, 198], np.uint8)
|
||||||
|
|
||||||
|
ETR_HSV_MIN = np.array([130, 60, 80], np.uint8)
|
||||||
|
ETR_HSV_MAX = np.array([140, 145, 180], np.uint8)
|
||||||
|
|
||||||
|
TRACK_LOST_HSV_MIN = np.array([170, 75, 90], np.uint8)
|
||||||
|
TRACK_LOST_HSV_MAX = np.array([175, 170, 160], np.uint8)
|
||||||
|
|
||||||
|
TRACK_COMPLETE_HSV_MIN = np.array([140, 0, 50], np.uint8)
|
||||||
|
TRACK_COMPLETE_HSV_MAX = np.array([145, 50, 130], np.uint8)
|
||||||
|
|
||||||
|
FULL_RECALL_HSV_MIN = np.array([140, 60, 80], np.uint8)
|
||||||
|
FULL_RECALL_HSV_MAX = np.array([150, 130, 145], np.uint8)
|
||||||
|
|
||||||
|
PURE_MEMORY_HSV_MIN = np.array([90, 70, 80], np.uint8)
|
||||||
|
PURE_MEMORY_HSV_MAX = np.array([110, 200, 175], np.uint8)
|
||||||
|
|
||||||
|
@classmethod
|
||||||
|
def gray(cls, roi_bgr: Mat) -> Mat:
|
||||||
|
bgr_value_equal_mask = np.max(roi_bgr, axis=2) - np.min(roi_bgr, axis=2) <= 5
|
||||||
|
img_bgr = roi_bgr.copy()
|
||||||
|
img_bgr[~bgr_value_equal_mask] = np.array([0, 0, 0], roi_bgr.dtype)
|
||||||
|
img_bgr = cv2.erode(img_bgr, cv2.getStructuringElement(cv2.MORPH_RECT, (2, 2)))
|
||||||
|
img_bgr = cv2.dilate(img_bgr, cv2.getStructuringElement(cv2.MORPH_RECT, (1, 1)))
|
||||||
|
return cv2.inRange(img_bgr, cls.GRAY_BGR_MIN, cls.GRAY_BGR_MAX)
|
||||||
|
|
||||||
|
@classmethod
|
||||||
|
def pure(cls, roi_bgr: Mat) -> Mat:
|
||||||
|
return cls.gray(roi_bgr)
|
||||||
|
|
||||||
|
@classmethod
|
||||||
|
def far(cls, roi_bgr: Mat) -> Mat:
|
||||||
|
return cls.gray(roi_bgr)
|
||||||
|
|
||||||
|
@classmethod
|
||||||
|
def lost(cls, roi_bgr: Mat) -> Mat:
|
||||||
|
return cls.gray(roi_bgr)
|
||||||
|
|
||||||
|
@classmethod
|
||||||
|
def score(cls, roi_bgr: Mat) -> Mat:
|
||||||
|
return cls.mask_bgr_in_hsv(roi_bgr, cls.SCORE_HSV_MIN, cls.SCORE_HSV_MAX)
|
||||||
|
|
||||||
|
@classmethod
|
||||||
|
def rating_class_pst(cls, roi_bgr: Mat) -> Mat:
|
||||||
|
return cls.mask_bgr_in_hsv(roi_bgr, cls.PST_HSV_MIN, cls.PST_HSV_MAX)
|
||||||
|
|
||||||
|
@classmethod
|
||||||
|
def rating_class_prs(cls, roi_bgr: Mat) -> Mat:
|
||||||
|
return cls.mask_bgr_in_hsv(roi_bgr, cls.PRS_HSV_MIN, cls.PRS_HSV_MAX)
|
||||||
|
|
||||||
|
@classmethod
|
||||||
|
def rating_class_ftr(cls, roi_bgr: Mat) -> Mat:
|
||||||
|
return cls.mask_bgr_in_hsv(roi_bgr, cls.FTR_HSV_MIN, cls.FTR_HSV_MAX)
|
||||||
|
|
||||||
|
@classmethod
|
||||||
|
def rating_class_byd(cls, roi_bgr: Mat) -> Mat:
|
||||||
|
return cls.mask_bgr_in_hsv(roi_bgr, cls.BYD_HSV_MIN, cls.BYD_HSV_MAX)
|
||||||
|
|
||||||
|
@classmethod
|
||||||
|
def rating_class_etr(cls, roi_bgr: Mat) -> Mat:
|
||||||
|
return cls.mask_bgr_in_hsv(roi_bgr, cls.ETR_HSV_MIN, cls.ETR_HSV_MAX)
|
||||||
|
|
||||||
|
@classmethod
|
||||||
|
def max_recall(cls, roi_bgr: Mat) -> Mat:
|
||||||
|
return cls.gray(roi_bgr)
|
||||||
|
|
||||||
|
@classmethod
|
||||||
|
def clear_status_track_lost(cls, roi_bgr: Mat) -> Mat:
|
||||||
|
return cls.mask_bgr_in_hsv(
|
||||||
|
roi_bgr, cls.TRACK_LOST_HSV_MIN, cls.TRACK_LOST_HSV_MAX
|
||||||
|
)
|
||||||
|
|
||||||
|
@classmethod
|
||||||
|
def clear_status_track_complete(cls, roi_bgr: Mat) -> Mat:
|
||||||
|
return cls.mask_bgr_in_hsv(
|
||||||
|
roi_bgr, cls.TRACK_COMPLETE_HSV_MIN, cls.TRACK_COMPLETE_HSV_MAX
|
||||||
|
)
|
||||||
|
|
||||||
|
@classmethod
|
||||||
|
def clear_status_full_recall(cls, roi_bgr: Mat) -> Mat:
|
||||||
|
return cls.mask_bgr_in_hsv(
|
||||||
|
roi_bgr, cls.FULL_RECALL_HSV_MIN, cls.FULL_RECALL_HSV_MAX
|
||||||
|
)
|
||||||
|
|
||||||
|
@classmethod
|
||||||
|
def clear_status_pure_memory(cls, roi_bgr: Mat) -> Mat:
|
||||||
|
return cls.mask_bgr_in_hsv(
|
||||||
|
roi_bgr, cls.PURE_MEMORY_HSV_MIN, cls.PURE_MEMORY_HSV_MAX
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
class DeviceRoisMaskerAutoT2(DeviceRoisMaskerAuto):
|
||||||
|
PFL_HSV_MIN = np.array([0, 0, 248], np.uint8)
|
||||||
|
PFL_HSV_MAX = np.array([179, 40, 255], np.uint8)
|
||||||
|
|
||||||
|
SCORE_HSV_MIN = np.array([0, 0, 180], np.uint8)
|
||||||
|
SCORE_HSV_MAX = np.array([179, 255, 255], np.uint8)
|
||||||
|
|
||||||
|
PST_HSV_MIN = np.array([100, 50, 80], np.uint8)
|
||||||
|
PST_HSV_MAX = np.array([100, 255, 255], np.uint8)
|
||||||
|
|
||||||
|
PRS_HSV_MIN = np.array([43, 40, 75], np.uint8)
|
||||||
|
PRS_HSV_MAX = np.array([50, 155, 190], np.uint8)
|
||||||
|
|
||||||
|
FTR_HSV_MIN = np.array([149, 30, 0], np.uint8)
|
||||||
|
FTR_HSV_MAX = np.array([155, 181, 150], np.uint8)
|
||||||
|
|
||||||
|
BYD_HSV_MIN = np.array([170, 50, 50], np.uint8)
|
||||||
|
BYD_HSV_MAX = np.array([179, 210, 198], np.uint8)
|
||||||
|
|
||||||
|
ETR_HSV_MIN = np.array([130, 60, 80], np.uint8)
|
||||||
|
ETR_HSV_MAX = np.array([140, 145, 180], np.uint8)
|
||||||
|
|
||||||
|
MAX_RECALL_HSV_MIN = np.array([125, 0, 0], np.uint8)
|
||||||
|
MAX_RECALL_HSV_MAX = np.array([145, 100, 150], np.uint8)
|
||||||
|
|
||||||
|
TRACK_LOST_HSV_MIN = np.array([170, 75, 90], np.uint8)
|
||||||
|
TRACK_LOST_HSV_MAX = np.array([175, 170, 160], np.uint8)
|
||||||
|
|
||||||
|
TRACK_COMPLETE_HSV_MIN = np.array([140, 0, 50], np.uint8)
|
||||||
|
TRACK_COMPLETE_HSV_MAX = np.array([145, 50, 130], np.uint8)
|
||||||
|
|
||||||
|
FULL_RECALL_HSV_MIN = np.array([140, 60, 80], np.uint8)
|
||||||
|
FULL_RECALL_HSV_MAX = np.array([150, 130, 145], np.uint8)
|
||||||
|
|
||||||
|
PURE_MEMORY_HSV_MIN = np.array([90, 70, 80], np.uint8)
|
||||||
|
PURE_MEMORY_HSV_MAX = np.array([110, 200, 175], np.uint8)
|
||||||
|
|
||||||
|
@classmethod
|
||||||
|
def pfl(cls, roi_bgr: Mat) -> Mat:
|
||||||
|
return cls.mask_bgr_in_hsv(roi_bgr, cls.PFL_HSV_MIN, cls.PFL_HSV_MAX)
|
||||||
|
|
||||||
|
@classmethod
|
||||||
|
def pure(cls, roi_bgr: Mat) -> Mat:
|
||||||
|
return cls.pfl(roi_bgr)
|
||||||
|
|
||||||
|
@classmethod
|
||||||
|
def far(cls, roi_bgr: Mat) -> Mat:
|
||||||
|
return cls.pfl(roi_bgr)
|
||||||
|
|
||||||
|
@classmethod
|
||||||
|
def lost(cls, roi_bgr: Mat) -> Mat:
|
||||||
|
return cls.pfl(roi_bgr)
|
||||||
|
|
||||||
|
@classmethod
|
||||||
|
def score(cls, roi_bgr: Mat) -> Mat:
|
||||||
|
return cls.mask_bgr_in_hsv(roi_bgr, cls.SCORE_HSV_MIN, cls.SCORE_HSV_MAX)
|
||||||
|
|
||||||
|
@classmethod
|
||||||
|
def rating_class_pst(cls, roi_bgr: Mat) -> Mat:
|
||||||
|
return cls.mask_bgr_in_hsv(roi_bgr, cls.PST_HSV_MIN, cls.PST_HSV_MAX)
|
||||||
|
|
||||||
|
@classmethod
|
||||||
|
def rating_class_prs(cls, roi_bgr: Mat) -> Mat:
|
||||||
|
return cls.mask_bgr_in_hsv(roi_bgr, cls.PRS_HSV_MIN, cls.PRS_HSV_MAX)
|
||||||
|
|
||||||
|
@classmethod
|
||||||
|
def rating_class_ftr(cls, roi_bgr: Mat) -> Mat:
|
||||||
|
return cls.mask_bgr_in_hsv(roi_bgr, cls.FTR_HSV_MIN, cls.FTR_HSV_MAX)
|
||||||
|
|
||||||
|
@classmethod
|
||||||
|
def rating_class_byd(cls, roi_bgr: Mat) -> Mat:
|
||||||
|
return cls.mask_bgr_in_hsv(roi_bgr, cls.BYD_HSV_MIN, cls.BYD_HSV_MAX)
|
||||||
|
|
||||||
|
@classmethod
|
||||||
|
def rating_class_etr(cls, roi_bgr: Mat) -> Mat:
|
||||||
|
return cls.mask_bgr_in_hsv(roi_bgr, cls.ETR_HSV_MIN, cls.ETR_HSV_MAX)
|
||||||
|
|
||||||
|
@classmethod
|
||||||
|
def max_recall(cls, roi_bgr: Mat) -> Mat:
|
||||||
|
return cls.mask_bgr_in_hsv(
|
||||||
|
roi_bgr, cls.MAX_RECALL_HSV_MIN, cls.MAX_RECALL_HSV_MAX
|
||||||
|
)
|
||||||
|
|
||||||
|
@classmethod
|
||||||
|
def clear_status_track_lost(cls, roi_bgr: Mat) -> Mat:
|
||||||
|
return cls.mask_bgr_in_hsv(
|
||||||
|
roi_bgr, cls.TRACK_LOST_HSV_MIN, cls.TRACK_LOST_HSV_MAX
|
||||||
|
)
|
||||||
|
|
||||||
|
@classmethod
|
||||||
|
def clear_status_track_complete(cls, roi_bgr: Mat) -> Mat:
|
||||||
|
return cls.mask_bgr_in_hsv(
|
||||||
|
roi_bgr, cls.TRACK_COMPLETE_HSV_MIN, cls.TRACK_COMPLETE_HSV_MAX
|
||||||
|
)
|
||||||
|
|
||||||
|
@classmethod
|
||||||
|
def clear_status_full_recall(cls, roi_bgr: Mat) -> Mat:
|
||||||
|
return cls.mask_bgr_in_hsv(
|
||||||
|
roi_bgr, cls.FULL_RECALL_HSV_MIN, cls.FULL_RECALL_HSV_MAX
|
||||||
|
)
|
||||||
|
|
||||||
|
@classmethod
|
||||||
|
def clear_status_pure_memory(cls, roi_bgr: Mat) -> Mat:
|
||||||
|
return cls.mask_bgr_in_hsv(
|
||||||
|
roi_bgr, cls.PURE_MEMORY_HSV_MIN, cls.PURE_MEMORY_HSV_MAX
|
||||||
|
)
|
61
src/arcaea_offline_ocr/scenarios/device/masker/base.py
Normal file
61
src/arcaea_offline_ocr/scenarios/device/masker/base.py
Normal file
@ -0,0 +1,61 @@
|
|||||||
|
from abc import ABC, abstractmethod
|
||||||
|
|
||||||
|
from arcaea_offline_ocr.types import Mat
|
||||||
|
|
||||||
|
|
||||||
|
class DeviceRoisMasker(ABC):
|
||||||
|
@classmethod
|
||||||
|
@abstractmethod
|
||||||
|
def pure(cls, roi_bgr: Mat) -> Mat: ...
|
||||||
|
|
||||||
|
@classmethod
|
||||||
|
@abstractmethod
|
||||||
|
def far(cls, roi_bgr: Mat) -> Mat: ...
|
||||||
|
|
||||||
|
@classmethod
|
||||||
|
@abstractmethod
|
||||||
|
def lost(cls, roi_bgr: Mat) -> Mat: ...
|
||||||
|
|
||||||
|
@classmethod
|
||||||
|
@abstractmethod
|
||||||
|
def score(cls, roi_bgr: Mat) -> Mat: ...
|
||||||
|
|
||||||
|
@classmethod
|
||||||
|
@abstractmethod
|
||||||
|
def rating_class_pst(cls, roi_bgr: Mat) -> Mat: ...
|
||||||
|
|
||||||
|
@classmethod
|
||||||
|
@abstractmethod
|
||||||
|
def rating_class_prs(cls, roi_bgr: Mat) -> Mat: ...
|
||||||
|
|
||||||
|
@classmethod
|
||||||
|
@abstractmethod
|
||||||
|
def rating_class_ftr(cls, roi_bgr: Mat) -> Mat: ...
|
||||||
|
|
||||||
|
@classmethod
|
||||||
|
@abstractmethod
|
||||||
|
def rating_class_byd(cls, roi_bgr: Mat) -> Mat: ...
|
||||||
|
|
||||||
|
@classmethod
|
||||||
|
@abstractmethod
|
||||||
|
def rating_class_etr(cls, roi_bgr: Mat) -> Mat: ...
|
||||||
|
|
||||||
|
@classmethod
|
||||||
|
@abstractmethod
|
||||||
|
def max_recall(cls, roi_bgr: Mat) -> Mat: ...
|
||||||
|
|
||||||
|
@classmethod
|
||||||
|
@abstractmethod
|
||||||
|
def clear_status_track_lost(cls, roi_bgr: Mat) -> Mat: ...
|
||||||
|
|
||||||
|
@classmethod
|
||||||
|
@abstractmethod
|
||||||
|
def clear_status_track_complete(cls, roi_bgr: Mat) -> Mat: ...
|
||||||
|
|
||||||
|
@classmethod
|
||||||
|
@abstractmethod
|
||||||
|
def clear_status_full_recall(cls, roi_bgr: Mat) -> Mat: ...
|
||||||
|
|
||||||
|
@classmethod
|
||||||
|
@abstractmethod
|
||||||
|
def clear_status_pure_memory(cls, roi_bgr: Mat) -> Mat: ...
|
9
src/arcaea_offline_ocr/scenarios/device/rois/__init__.py
Normal file
9
src/arcaea_offline_ocr/scenarios/device/rois/__init__.py
Normal file
@ -0,0 +1,9 @@
|
|||||||
|
from .auto import DeviceRoisAuto, DeviceRoisAutoT1, DeviceRoisAutoT2
|
||||||
|
from .base import DeviceRois
|
||||||
|
|
||||||
|
__all__ = [
|
||||||
|
"DeviceRois",
|
||||||
|
"DeviceRoisAuto",
|
||||||
|
"DeviceRoisAutoT1",
|
||||||
|
"DeviceRoisAutoT2",
|
||||||
|
]
|
255
src/arcaea_offline_ocr/scenarios/device/rois/auto.py
Normal file
255
src/arcaea_offline_ocr/scenarios/device/rois/auto.py
Normal file
@ -0,0 +1,255 @@
|
|||||||
|
from arcaea_offline_ocr.types import XYWHRect
|
||||||
|
|
||||||
|
from .base import DeviceRois
|
||||||
|
|
||||||
|
|
||||||
|
class DeviceRoisAuto(DeviceRois):
|
||||||
|
def __init__(self, w: int, h: int):
|
||||||
|
self.w = w
|
||||||
|
self.h = h
|
||||||
|
|
||||||
|
|
||||||
|
class DeviceRoisAutoT1(DeviceRoisAuto):
|
||||||
|
@property
|
||||||
|
def factor(self):
|
||||||
|
return (
|
||||||
|
((self.w / 16) * 9) / 720 if (self.w / self.h) < (16 / 9) else self.h / 720
|
||||||
|
)
|
||||||
|
|
||||||
|
@property
|
||||||
|
def w_mid(self):
|
||||||
|
return self.w / 2
|
||||||
|
|
||||||
|
@property
|
||||||
|
def h_mid(self):
|
||||||
|
return self.h / 2
|
||||||
|
|
||||||
|
@property
|
||||||
|
def top_bar(self):
|
||||||
|
return (0, 0, self.w, 50 * self.factor)
|
||||||
|
|
||||||
|
@property
|
||||||
|
def layout_area_h_mid(self):
|
||||||
|
return self.h / 2 + self.top_bar[3]
|
||||||
|
|
||||||
|
@property
|
||||||
|
def pfl_left_from_w_mid(self):
|
||||||
|
return 5 * self.factor
|
||||||
|
|
||||||
|
@property
|
||||||
|
def pfl_x(self):
|
||||||
|
return self.w_mid + self.pfl_left_from_w_mid
|
||||||
|
|
||||||
|
@property
|
||||||
|
def pfl_w(self):
|
||||||
|
return 76 * self.factor
|
||||||
|
|
||||||
|
@property
|
||||||
|
def pfl_h(self):
|
||||||
|
return 26 * self.factor
|
||||||
|
|
||||||
|
@property
|
||||||
|
def pure(self):
|
||||||
|
return XYWHRect(
|
||||||
|
self.pfl_x,
|
||||||
|
self.layout_area_h_mid + 110 * self.factor,
|
||||||
|
self.pfl_w,
|
||||||
|
self.pfl_h,
|
||||||
|
)
|
||||||
|
|
||||||
|
@property
|
||||||
|
def far(self):
|
||||||
|
return XYWHRect(
|
||||||
|
self.pfl_x,
|
||||||
|
self.pure[1] + self.pure[3] + 12 * self.factor,
|
||||||
|
self.pfl_w,
|
||||||
|
self.pfl_h,
|
||||||
|
)
|
||||||
|
|
||||||
|
@property
|
||||||
|
def lost(self):
|
||||||
|
return XYWHRect(
|
||||||
|
self.pfl_x,
|
||||||
|
self.far[1] + self.far[3] + 10 * self.factor,
|
||||||
|
self.pfl_w,
|
||||||
|
self.pfl_h,
|
||||||
|
)
|
||||||
|
|
||||||
|
@property
|
||||||
|
def score(self):
|
||||||
|
w = 280 * self.factor
|
||||||
|
h = 45 * self.factor
|
||||||
|
return XYWHRect(
|
||||||
|
self.w_mid - w / 2,
|
||||||
|
self.layout_area_h_mid - 75 * self.factor - h,
|
||||||
|
w,
|
||||||
|
h,
|
||||||
|
)
|
||||||
|
|
||||||
|
@property
|
||||||
|
def rating_class(self):
|
||||||
|
return XYWHRect(
|
||||||
|
self.w_mid - 610 * self.factor,
|
||||||
|
self.layout_area_h_mid - 180 * self.factor,
|
||||||
|
265 * self.factor,
|
||||||
|
35 * self.factor,
|
||||||
|
)
|
||||||
|
|
||||||
|
@property
|
||||||
|
def max_recall(self):
|
||||||
|
return XYWHRect(
|
||||||
|
self.w_mid - 465 * self.factor,
|
||||||
|
self.layout_area_h_mid - 215 * self.factor,
|
||||||
|
150 * self.factor,
|
||||||
|
35 * self.factor,
|
||||||
|
)
|
||||||
|
|
||||||
|
@property
|
||||||
|
def jacket(self):
|
||||||
|
return XYWHRect(
|
||||||
|
self.w_mid - 610 * self.factor,
|
||||||
|
self.layout_area_h_mid - 143 * self.factor,
|
||||||
|
375 * self.factor,
|
||||||
|
375 * self.factor,
|
||||||
|
)
|
||||||
|
|
||||||
|
@property
|
||||||
|
def clear_status(self):
|
||||||
|
w = 550 * self.factor
|
||||||
|
h = 60 * self.factor
|
||||||
|
return XYWHRect(
|
||||||
|
self.w_mid - w / 2,
|
||||||
|
self.layout_area_h_mid - 155 * self.factor - h,
|
||||||
|
w * 0.4,
|
||||||
|
h,
|
||||||
|
)
|
||||||
|
|
||||||
|
@property
|
||||||
|
def partner_icon(self):
|
||||||
|
w = 90 * self.factor
|
||||||
|
h = 75 * self.factor
|
||||||
|
return XYWHRect(self.w_mid - w / 2, 0, w, h)
|
||||||
|
|
||||||
|
|
||||||
|
class DeviceRoisAutoT2(DeviceRoisAuto):
|
||||||
|
@property
|
||||||
|
def factor(self):
|
||||||
|
return (
|
||||||
|
((self.w / 16) * 9) / 1080
|
||||||
|
if (self.w / self.h) < (16 / 9)
|
||||||
|
else self.h / 1080
|
||||||
|
)
|
||||||
|
|
||||||
|
@property
|
||||||
|
def w_mid(self):
|
||||||
|
return self.w / 2
|
||||||
|
|
||||||
|
@property
|
||||||
|
def h_mid(self):
|
||||||
|
return self.h / 2
|
||||||
|
|
||||||
|
@property
|
||||||
|
def top_bar(self):
|
||||||
|
return (0, 0, self.w, 75 * self.factor)
|
||||||
|
|
||||||
|
@property
|
||||||
|
def layout_area_h_mid(self):
|
||||||
|
return self.h / 2 + self.top_bar[3]
|
||||||
|
|
||||||
|
@property
|
||||||
|
def pfl_mid_from_w_mid(self):
|
||||||
|
return 60 * self.factor
|
||||||
|
|
||||||
|
@property
|
||||||
|
def pfl_x(self):
|
||||||
|
return self.w_mid + 10 * self.factor
|
||||||
|
|
||||||
|
@property
|
||||||
|
def pfl_w(self):
|
||||||
|
return 100 * self.factor
|
||||||
|
|
||||||
|
@property
|
||||||
|
def pfl_h(self):
|
||||||
|
return 24 * self.factor
|
||||||
|
|
||||||
|
@property
|
||||||
|
def pure(self):
|
||||||
|
return XYWHRect(
|
||||||
|
self.pfl_x,
|
||||||
|
self.layout_area_h_mid + 175 * self.factor,
|
||||||
|
self.pfl_w,
|
||||||
|
self.pfl_h,
|
||||||
|
)
|
||||||
|
|
||||||
|
@property
|
||||||
|
def far(self):
|
||||||
|
return XYWHRect(
|
||||||
|
self.pfl_x,
|
||||||
|
self.pure[1] + self.pure[3] + 30 * self.factor,
|
||||||
|
self.pfl_w,
|
||||||
|
self.pfl_h,
|
||||||
|
)
|
||||||
|
|
||||||
|
@property
|
||||||
|
def lost(self):
|
||||||
|
return XYWHRect(
|
||||||
|
self.pfl_x,
|
||||||
|
self.far[1] + self.far[3] + 35 * self.factor,
|
||||||
|
self.pfl_w,
|
||||||
|
self.pfl_h,
|
||||||
|
)
|
||||||
|
|
||||||
|
@property
|
||||||
|
def score(self):
|
||||||
|
w = 420 * self.factor
|
||||||
|
h = 70 * self.factor
|
||||||
|
return XYWHRect(
|
||||||
|
self.w_mid - w / 2,
|
||||||
|
self.layout_area_h_mid - 110 * self.factor - h,
|
||||||
|
w,
|
||||||
|
h,
|
||||||
|
)
|
||||||
|
|
||||||
|
@property
|
||||||
|
def rating_class(self):
|
||||||
|
return XYWHRect(
|
||||||
|
max(0, self.w_mid - 965 * self.factor),
|
||||||
|
self.layout_area_h_mid - 330 * self.factor,
|
||||||
|
350 * self.factor,
|
||||||
|
110 * self.factor,
|
||||||
|
)
|
||||||
|
|
||||||
|
@property
|
||||||
|
def max_recall(self):
|
||||||
|
return XYWHRect(
|
||||||
|
self.w_mid - 625 * self.factor,
|
||||||
|
self.layout_area_h_mid - 275 * self.factor,
|
||||||
|
150 * self.factor,
|
||||||
|
50 * self.factor,
|
||||||
|
)
|
||||||
|
|
||||||
|
@property
|
||||||
|
def jacket(self):
|
||||||
|
return XYWHRect(
|
||||||
|
self.w_mid - 915 * self.factor,
|
||||||
|
self.layout_area_h_mid - 215 * self.factor,
|
||||||
|
565 * self.factor,
|
||||||
|
565 * self.factor,
|
||||||
|
)
|
||||||
|
|
||||||
|
@property
|
||||||
|
def clear_status(self):
|
||||||
|
w = 825 * self.factor
|
||||||
|
h = 90 * self.factor
|
||||||
|
return XYWHRect(
|
||||||
|
self.w_mid - w / 2,
|
||||||
|
self.layout_area_h_mid - 235 * self.factor - h,
|
||||||
|
w * 0.4,
|
||||||
|
h,
|
||||||
|
)
|
||||||
|
|
||||||
|
@property
|
||||||
|
def partner_icon(self):
|
||||||
|
w = 135 * self.factor
|
||||||
|
h = 110 * self.factor
|
||||||
|
return XYWHRect(self.w_mid - w / 2, 0, w, h)
|
33
src/arcaea_offline_ocr/scenarios/device/rois/base.py
Normal file
33
src/arcaea_offline_ocr/scenarios/device/rois/base.py
Normal file
@ -0,0 +1,33 @@
|
|||||||
|
from abc import ABC, abstractmethod
|
||||||
|
|
||||||
|
from arcaea_offline_ocr.types import XYWHRect
|
||||||
|
|
||||||
|
|
||||||
|
class DeviceRois(ABC):
|
||||||
|
@property
|
||||||
|
@abstractmethod
|
||||||
|
def pure(self) -> XYWHRect: ...
|
||||||
|
@property
|
||||||
|
@abstractmethod
|
||||||
|
def far(self) -> XYWHRect: ...
|
||||||
|
@property
|
||||||
|
@abstractmethod
|
||||||
|
def lost(self) -> XYWHRect: ...
|
||||||
|
@property
|
||||||
|
@abstractmethod
|
||||||
|
def score(self) -> XYWHRect: ...
|
||||||
|
@property
|
||||||
|
@abstractmethod
|
||||||
|
def rating_class(self) -> XYWHRect: ...
|
||||||
|
@property
|
||||||
|
@abstractmethod
|
||||||
|
def max_recall(self) -> XYWHRect: ...
|
||||||
|
@property
|
||||||
|
@abstractmethod
|
||||||
|
def jacket(self) -> XYWHRect: ...
|
||||||
|
@property
|
||||||
|
@abstractmethod
|
||||||
|
def clear_status(self) -> XYWHRect: ...
|
||||||
|
@property
|
||||||
|
@abstractmethod
|
||||||
|
def partner_icon(self) -> XYWHRect: ...
|
@ -1,110 +0,0 @@
|
|||||||
import io
|
|
||||||
import sqlite3
|
|
||||||
from gzip import GzipFile
|
|
||||||
from typing import Tuple
|
|
||||||
|
|
||||||
import cv2
|
|
||||||
import numpy as np
|
|
||||||
|
|
||||||
from .types import Mat
|
|
||||||
|
|
||||||
|
|
||||||
class SIFTDatabase:
|
|
||||||
def __init__(self, db_path: str, load: bool = True):
|
|
||||||
self.__db_path = db_path
|
|
||||||
self.__tags = []
|
|
||||||
self.__descriptors = []
|
|
||||||
self.__size = None
|
|
||||||
|
|
||||||
self.__sift = cv2.SIFT_create()
|
|
||||||
self.__bf_matcher = cv2.BFMatcher()
|
|
||||||
|
|
||||||
if load:
|
|
||||||
self.load_db()
|
|
||||||
|
|
||||||
@property
|
|
||||||
def db_path(self):
|
|
||||||
return self.__db_path
|
|
||||||
|
|
||||||
@db_path.setter
|
|
||||||
def db_path(self, value):
|
|
||||||
self.__db_path = value
|
|
||||||
|
|
||||||
@property
|
|
||||||
def tags(self):
|
|
||||||
return self.__tags
|
|
||||||
|
|
||||||
@property
|
|
||||||
def descriptors(self):
|
|
||||||
return self.__descriptors
|
|
||||||
|
|
||||||
@property
|
|
||||||
def size(self):
|
|
||||||
return self.__size
|
|
||||||
|
|
||||||
@size.setter
|
|
||||||
def size(self, value: Tuple[int, int]):
|
|
||||||
self.__size = value
|
|
||||||
|
|
||||||
@property
|
|
||||||
def sift(self):
|
|
||||||
return self.__sift
|
|
||||||
|
|
||||||
@property
|
|
||||||
def bf_matcher(self):
|
|
||||||
return self.__bf_matcher
|
|
||||||
|
|
||||||
def load_db(self):
|
|
||||||
conn = sqlite3.connect(self.db_path)
|
|
||||||
with conn:
|
|
||||||
cursor = conn.cursor()
|
|
||||||
|
|
||||||
size_str = cursor.execute(
|
|
||||||
"SELECT value FROM properties WHERE id = 'size'"
|
|
||||||
).fetchone()[0]
|
|
||||||
sizr_str_arr = size_str.split(", ")
|
|
||||||
self.size = tuple(int(s) for s in sizr_str_arr)
|
|
||||||
tag__descriptors_bytes = cursor.execute(
|
|
||||||
"SELECT tag, descriptors FROM sift"
|
|
||||||
).fetchall()
|
|
||||||
|
|
||||||
gzipped = int(
|
|
||||||
cursor.execute(
|
|
||||||
"SELECT value FROM properties WHERE id = 'gzip'"
|
|
||||||
).fetchone()[0]
|
|
||||||
)
|
|
||||||
for tag, descriptor_bytes in tag__descriptors_bytes:
|
|
||||||
buffer = io.BytesIO(descriptor_bytes)
|
|
||||||
self.tags.append(tag)
|
|
||||||
if gzipped == 0:
|
|
||||||
self.descriptors.append(np.load(buffer))
|
|
||||||
else:
|
|
||||||
gzipped_buffer = GzipFile(None, "rb", fileobj=buffer)
|
|
||||||
self.descriptors.append(np.load(gzipped_buffer))
|
|
||||||
|
|
||||||
def lookup_img(
|
|
||||||
self,
|
|
||||||
__img: Mat,
|
|
||||||
*,
|
|
||||||
sift=None,
|
|
||||||
bf=None,
|
|
||||||
) -> Tuple[str, float]:
|
|
||||||
sift = sift or self.sift
|
|
||||||
bf = bf or self.bf_matcher
|
|
||||||
|
|
||||||
img = __img.copy()
|
|
||||||
if self.size is not None:
|
|
||||||
img = cv2.resize(img, self.size)
|
|
||||||
_, descriptors = sift.detectAndCompute(img, None)
|
|
||||||
|
|
||||||
good_results = []
|
|
||||||
for des in self.descriptors:
|
|
||||||
matches = bf.knnMatch(descriptors, des, k=2)
|
|
||||||
good = sum(m.distance < 0.75 * n.distance for m, n in matches)
|
|
||||||
good_results.append(good)
|
|
||||||
best_match_index = max(enumerate(good_results), key=lambda i: i[1])[0]
|
|
||||||
|
|
||||||
return (
|
|
||||||
self.tags[best_match_index],
|
|
||||||
good_results[best_match_index] / len(descriptors),
|
|
||||||
)
|
|
@ -1,42 +1,42 @@
|
|||||||
from collections.abc import Iterable
|
from math import floor
|
||||||
from typing import Any, NamedTuple, Protocol, Tuple, Union
|
from typing import Callable, NamedTuple, Union
|
||||||
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
|
|
||||||
# from pylance
|
Mat = np.ndarray
|
||||||
Mat = np.ndarray[int, np.dtype[np.generic]]
|
|
||||||
|
_IntOrFloat = Union[int, float]
|
||||||
|
|
||||||
|
|
||||||
class XYWHRect(NamedTuple):
|
class XYWHRect(NamedTuple):
|
||||||
x: int
|
x: _IntOrFloat
|
||||||
y: int
|
y: _IntOrFloat
|
||||||
w: int
|
w: _IntOrFloat
|
||||||
h: int
|
h: _IntOrFloat
|
||||||
|
|
||||||
def __add__(self, other: Union["XYWHRect", Tuple[int, int, int, int]]):
|
def _to_int(self, func: Callable[[_IntOrFloat], int]):
|
||||||
if not isinstance(other, Iterable) or len(other) != 4:
|
return (func(self.x), func(self.y), func(self.w), func(self.h))
|
||||||
raise ValueError()
|
|
||||||
|
def rounded(self):
|
||||||
|
return self._to_int(round)
|
||||||
|
|
||||||
|
def floored(self):
|
||||||
|
return self._to_int(floor)
|
||||||
|
|
||||||
|
def __add__(self, other):
|
||||||
|
if not isinstance(other, (list, tuple)) or len(other) != 4:
|
||||||
|
raise TypeError()
|
||||||
|
|
||||||
return self.__class__(*[a + b for a, b in zip(self, other)])
|
return self.__class__(*[a + b for a, b in zip(self, other)])
|
||||||
|
|
||||||
def __sub__(self, other: Union["XYWHRect", Tuple[int, int, int, int]]):
|
def __sub__(self, other):
|
||||||
if not isinstance(other, Iterable) or len(other) != 4:
|
if not isinstance(other, (list, tuple)) or len(other) != 4:
|
||||||
raise ValueError()
|
raise TypeError()
|
||||||
|
|
||||||
return self.__class__(*[a - b for a, b in zip(self, other)])
|
return self.__class__(*[a - b for a, b in zip(self, other)])
|
||||||
|
|
||||||
|
def __mul__(self, other):
|
||||||
|
if not isinstance(other, (int, float)):
|
||||||
|
raise TypeError()
|
||||||
|
|
||||||
class cv2_ml_StatModel(Protocol):
|
return self.__class__(*[v * other for v in self])
|
||||||
def predict(self, samples: np.ndarray, results: np.ndarray, flags: int = 0):
|
|
||||||
...
|
|
||||||
|
|
||||||
def train(self, samples: np.ndarray, layout: int, responses: np.ndarray):
|
|
||||||
...
|
|
||||||
|
|
||||||
|
|
||||||
class cv2_ml_KNearest(cv2_ml_StatModel, Protocol):
|
|
||||||
def findNearest(
|
|
||||||
self, samples: np.ndarray, k: int
|
|
||||||
) -> Tuple[Any, np.ndarray, np.ndarray, np.ndarray]:
|
|
||||||
"""cv.ml.KNearest.findNearest(samples, k[, results[, neighborResponses[, dist]]]) -> retval, results, neighborResponses, dist"""
|
|
||||||
...
|
|
||||||
|
@ -1,70 +1,10 @@
|
|||||||
import io
|
|
||||||
from collections.abc import Iterable
|
|
||||||
from typing import Callable, Tuple, TypeVar, Union, overload
|
|
||||||
|
|
||||||
import cv2
|
import cv2
|
||||||
import numpy as np
|
import numpy as np
|
||||||
from PIL import Image, ImageCms
|
|
||||||
|
|
||||||
from .types import Mat, XYWHRect
|
|
||||||
|
|
||||||
__all__ = ["imread_unicode"]
|
__all__ = ["imread_unicode"]
|
||||||
|
|
||||||
|
|
||||||
def imread_unicode(filepath: str, flags: int = cv2.IMREAD_UNCHANGED) -> Mat:
|
def imread_unicode(filepath: str, flags: int = cv2.IMREAD_UNCHANGED):
|
||||||
# https://stackoverflow.com/a/57872297/16484891
|
# https://stackoverflow.com/a/57872297/16484891
|
||||||
# CC BY-SA 4.0
|
# CC BY-SA 4.0
|
||||||
return cv2.imdecode(np.fromfile(filepath, dtype=np.uint8), flags)
|
return cv2.imdecode(np.fromfile(filepath, dtype=np.uint8), flags)
|
||||||
|
|
||||||
|
|
||||||
def construct_int_xywh_rect(
|
|
||||||
rect: XYWHRect, func: Callable[[Union[int, float]], int] = round
|
|
||||||
):
|
|
||||||
return XYWHRect(*[func(num) for num in rect])
|
|
||||||
|
|
||||||
|
|
||||||
@overload
|
|
||||||
def apply_factor(item: int, factor: float) -> float:
|
|
||||||
...
|
|
||||||
|
|
||||||
|
|
||||||
@overload
|
|
||||||
def apply_factor(item: float, factor: float) -> float:
|
|
||||||
...
|
|
||||||
|
|
||||||
|
|
||||||
T = TypeVar("T", bound=Iterable)
|
|
||||||
|
|
||||||
|
|
||||||
@overload
|
|
||||||
def apply_factor(item: T, factor: float) -> T:
|
|
||||||
...
|
|
||||||
|
|
||||||
|
|
||||||
def apply_factor(item, factor: float):
|
|
||||||
if isinstance(item, (int, float)):
|
|
||||||
return item * factor
|
|
||||||
elif isinstance(item, Iterable):
|
|
||||||
return item.__class__([i * factor for i in item])
|
|
||||||
|
|
||||||
|
|
||||||
def convert_to_srgb(pil_img: Image.Image):
|
|
||||||
"""
|
|
||||||
Convert PIL image to sRGB color space (if possible)
|
|
||||||
and save the converted file.
|
|
||||||
|
|
||||||
https://stackoverflow.com/a/65667797/16484891
|
|
||||||
|
|
||||||
CC BY-SA 4.0
|
|
||||||
"""
|
|
||||||
icc = pil_img.info.get("icc_profile", "")
|
|
||||||
icc_conv = ""
|
|
||||||
|
|
||||||
if icc:
|
|
||||||
io_handle = io.BytesIO(icc) # virtual file
|
|
||||||
src_profile = ImageCms.ImageCmsProfile(io_handle)
|
|
||||||
dst_profile = ImageCms.createProfile("sRGB")
|
|
||||||
img_conv = ImageCms.profileToProfile(pil_img, src_profile, dst_profile)
|
|
||||||
icc_conv = img_conv.info.get("icc_profile", "")
|
|
||||||
|
|
||||||
return img_conv if icc != icc_conv else pil_img
|
|
||||||
|
Reference in New Issue
Block a user